首页 > 最新文献

Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science - WORKS '09最新文献

英文 中文
A navigation model for exploring scientific workflow provenance graphs 用于探索科学工作流来源图的导航模型
M. Anand, S. Bowers, Bertram Ludäscher
Many scientific workflow systems record provenance information in the form of data and process dependencies as part of workflow execution. Users often wish to explore these dependencies to reproduce, validate, and explain workflow results, e.g., by examining the data and processes that were used to produce particular workflow outputs. A natural interface for determining relevant provenance information, which is adopted by many systems, is to display the complete provenance dependency graph. However, for many workflows, provenance graphs can be large, with thousands or more nodes and edges. Displaying an entire provenance graph for such workflows can result in "provenance overload," where the large amount of provenance information available makes it difficult for users to find relevant information and explore data and process dependencies. In this paper, we address the challenges of "provenance overload" through a novel navigation model that provides operations for creating different views of provenance graphs along with approaches for easily navigating between different views. Further, our proposed navigation model provides an integrated approach for exploring, summarizing, and querying portions of provenance graphs. We also discuss different architectures for efficiently navigating large provenance graphs against an underlying provenance database.
许多科学的工作流系统以数据和过程依赖关系的形式记录来源信息,作为工作流执行的一部分。用户通常希望探索这些依赖关系,以重现、验证和解释工作流结果,例如,通过检查用于产生特定工作流输出的数据和过程。显示完整的来源依赖图是确定相关来源信息的一个自然接口,被许多系统所采用。然而,对于许多工作流,出处图可能很大,有数千个或更多的节点和边。为这样的工作流显示一个完整的来源图可能会导致“来源过载”,在这种情况下,大量可用的来源信息使得用户很难找到相关的信息,并探索数据和过程依赖关系。在本文中,我们通过一个新颖的导航模型来解决“来源过载”的挑战,该模型提供了创建不同来源图视图的操作,以及在不同视图之间轻松导航的方法。此外,我们提出的导航模型提供了一种用于探索、汇总和查询出处图部分的集成方法。我们还讨论了针对底层来源数据库有效导航大型来源图的不同架构。
{"title":"A navigation model for exploring scientific workflow provenance graphs","authors":"M. Anand, S. Bowers, Bertram Ludäscher","doi":"10.1145/1645164.1645166","DOIUrl":"https://doi.org/10.1145/1645164.1645166","url":null,"abstract":"Many scientific workflow systems record provenance information in the form of data and process dependencies as part of workflow execution. Users often wish to explore these dependencies to reproduce, validate, and explain workflow results, e.g., by examining the data and processes that were used to produce particular workflow outputs. A natural interface for determining relevant provenance information, which is adopted by many systems, is to display the complete provenance dependency graph. However, for many workflows, provenance graphs can be large, with thousands or more nodes and edges. Displaying an entire provenance graph for such workflows can result in \"provenance overload,\" where the large amount of provenance information available makes it difficult for users to find relevant information and explore data and process dependencies. In this paper, we address the challenges of \"provenance overload\" through a novel navigation model that provides operations for creating different views of provenance graphs along with approaches for easily navigating between different views. Further, our proposed navigation model provides an integrated approach for exploring, summarizing, and querying portions of provenance graphs. We also discuss different architectures for efficiently navigating large provenance graphs against an underlying provenance database.","PeriodicalId":328942,"journal":{"name":"Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science - WORKS '09","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126419941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
期刊
Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science - WORKS '09
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1