Rational construction of the electrocatalytic centers is effective yet challenging for designing the high-efficient-stable counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Herein, the Prussian blue analogue (PBA)-derived nanocarbon-confined cobalt nanoparticles were successfully interconnected by the reduced graphene oxide network (Co-NC@rGO) and employed as the CE. In this interconnecting-and-confining scenario, the ambient graphitic carbon-shell and rGO network not only establish a communicating charge transfer bridge, but also greatly hinder the corrosion of the cobalt core in iodine electrolyte, thus endowing the catalyst fast reaction kinetics and outstanding durability. Simultaneously, the nanocarbon-concentrated cobalt active core ensures the composite extraordinary catalytic activity towards the triiodide/iodide redox couple, finally realizing the higher power conversion efficiency (PCE = 8.82%) than that of the commercial Pt CE (7.79%). The results deliver a new avenue to designed the promising carbonaceous CE catalyst with optimized active centers, which may play a vital role in DSSCs and wider energy applications.
{"title":"Optimized Photoelectric Catalysis with Enhanced Durability in Rgo-Interconnected Nanaocarbon-Confined Cobalt Nanoparticles","authors":"Wei Liao, Wen Wang, Dong Sun, Qiaoyu Cui, Xueqin Zuo, Qun Yang, Huaibao Tang, Shaowei Jin, Guang Li","doi":"10.2139/ssrn.3937820","DOIUrl":"https://doi.org/10.2139/ssrn.3937820","url":null,"abstract":"Rational construction of the electrocatalytic centers is effective yet challenging for designing the high-efficient-stable counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Herein, the Prussian blue analogue (PBA)-derived nanocarbon-confined cobalt nanoparticles were successfully interconnected by the reduced graphene oxide network (Co-NC@rGO) and employed as the CE. In this interconnecting-and-confining scenario, the ambient graphitic carbon-shell and rGO network not only establish a communicating charge transfer bridge, but also greatly hinder the corrosion of the cobalt core in iodine electrolyte, thus endowing the catalyst fast reaction kinetics and outstanding durability. Simultaneously, the nanocarbon-concentrated cobalt active core ensures the composite extraordinary catalytic activity towards the triiodide/iodide redox couple, finally realizing the higher power conversion efficiency (PCE = 8.82%) than that of the commercial Pt CE (7.79%). The results deliver a new avenue to designed the promising carbonaceous CE catalyst with optimized active centers, which may play a vital role in DSSCs and wider energy applications.","PeriodicalId":331793,"journal":{"name":"ChemRN: Nanoparticles (Topic)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132471667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}