首页 > 最新文献

Optical Sensing and Imaging Technologies and Applications最新文献

英文 中文
Monocular pose measurement using contour image length matching in range 基于等高线图像长度匹配的单眼位姿测量
Pub Date : 2019-03-01 DOI: 10.1117/12.2503540
Biao Liu, Ming-Da Tang, Xiaoli Hu, Hai-ying Wu, Weiguang Zhang, Yulun Zhang
{"title":"Monocular pose measurement using contour image length matching in range","authors":"Biao Liu, Ming-Da Tang, Xiaoli Hu, Hai-ying Wu, Weiguang Zhang, Yulun Zhang","doi":"10.1117/12.2503540","DOIUrl":"https://doi.org/10.1117/12.2503540","url":null,"abstract":"","PeriodicalId":334634,"journal":{"name":"Optical Sensing and Imaging Technologies and Applications","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114567159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error analysis of spaceborne high spectral resolution lidar 星载高光谱分辨率激光雷达误差分析
Pub Date : 2019-02-28 DOI: 10.1117/12.2505030
Junfa Dong, Jiqiao Liu, Xiaolei Zhu, D. Bi, Weibiao Chen, Xiaopeng Zhu
The high spectral resolution lidar (HSRL) technique employs a narrow spectral filter to separate the aerosol and molecular scattering components from the echo signals and therefore can retrieve the aerosol optical properties and lidar ratio (i.e., the extinction-to-backscatter ratio) profiles directly, which is different from the traditional Mie lidar with assumed lidar ratio. Accurate aerosol profiles measurement are useful for air quality monitoring. In this paper, a spaceborne HSRL lidar system simulation model based iodine vapor cell filter was presented. According to three different atmosphere aerosol distribution models and the uncertainties of atmosphere temperature and pressure, the signal to noise ratio (SNR) and the relative errors profiles of the backscattering coefficients of this lidar was simulated theoretically in daytime and nighttime. The result shows that the errors of aerosol backscattering coefficients are smaller in the aerosols dense area than in the sparse area. As altitude increases, the relative error of backscattering coefficient is increased. The relative backscattering coefficient error is within 16.5% below 5 km with 30 m range resolution and 10 km horizontal resolution.
高光谱分辨率激光雷达(HSRL)技术采用窄光谱滤波器将气溶胶和分子散射成分从回波信号中分离出来,从而可以直接获得气溶胶光学特性和激光雷达比(即消光与后向散射比)曲线,这与传统的Mie激光雷达采用假设的激光雷达比不同。准确的气溶胶廓线测量对空气质量监测非常有用。提出了一种基于碘蒸气池滤波器的星载HSRL激光雷达系统仿真模型。根据三种不同的大气气溶胶分布模式和大气温度、气压的不确定性,对该激光雷达在白天和夜间的后向散射系数的信噪比和相对误差曲线进行了理论模拟。结果表明,气溶胶稠密区气溶胶后向散射系数的误差小于稀疏区。随着海拔高度的增加,后向散射系数的相对误差增大。在距离分辨率为30 m、水平分辨率为10 km的情况下,5 km以下相对后向散射系数误差在16.5%以内。
{"title":"Error analysis of spaceborne high spectral resolution lidar","authors":"Junfa Dong, Jiqiao Liu, Xiaolei Zhu, D. Bi, Weibiao Chen, Xiaopeng Zhu","doi":"10.1117/12.2505030","DOIUrl":"https://doi.org/10.1117/12.2505030","url":null,"abstract":"The high spectral resolution lidar (HSRL) technique employs a narrow spectral filter to separate the aerosol and molecular scattering components from the echo signals and therefore can retrieve the aerosol optical properties and lidar ratio (i.e., the extinction-to-backscatter ratio) profiles directly, which is different from the traditional Mie lidar with assumed lidar ratio. Accurate aerosol profiles measurement are useful for air quality monitoring. In this paper, a spaceborne HSRL lidar system simulation model based iodine vapor cell filter was presented. According to three different atmosphere aerosol distribution models and the uncertainties of atmosphere temperature and pressure, the signal to noise ratio (SNR) and the relative errors profiles of the backscattering coefficients of this lidar was simulated theoretically in daytime and nighttime. The result shows that the errors of aerosol backscattering coefficients are smaller in the aerosols dense area than in the sparse area. As altitude increases, the relative error of backscattering coefficient is increased. The relative backscattering coefficient error is within 16.5% below 5 km with 30 m range resolution and 10 km horizontal resolution.","PeriodicalId":334634,"journal":{"name":"Optical Sensing and Imaging Technologies and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116928041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and research of a spectral data acquisition system for underwater in-situ detection 水下原位探测光谱数据采集系统的设计与研究
Pub Date : 2018-12-12 DOI: 10.1117/12.2505192
L. Hong, Yu Tao, Hu Liang, Li Bo, Zhang Feng
The study of underwater in-situ detection is an important research trend in underwater detection. In view of the design requirements of the spectral data acquisition system for underwater in-situ detection, this paper used the software and hardware co-design method, from two aspects of software and hardware. A prototype system of spectral data acquisition system based on Xilinx Zynq chip and linear array CCD detector was designed and implemented. Through theoretical analyzing, experimental debugging and verification analyzing, the results shown that the system could collect and store the spectral data in real time. It also had the characteristics of low noise and had a small electronic structure, which laid a foundation for the spectral data acquisition of underwater in-situ detection.
{"title":"Design and research of a spectral data acquisition system for underwater in-situ detection","authors":"L. Hong, Yu Tao, Hu Liang, Li Bo, Zhang Feng","doi":"10.1117/12.2505192","DOIUrl":"https://doi.org/10.1117/12.2505192","url":null,"abstract":"The study of underwater in-situ detection is an important research trend in underwater detection. In view of the design requirements of the spectral data acquisition system for underwater in-situ detection, this paper used the software and hardware co-design method, from two aspects of software and hardware. A prototype system of spectral data acquisition system based on Xilinx Zynq chip and linear array CCD detector was designed and implemented. Through theoretical analyzing, experimental debugging and verification analyzing, the results shown that the system could collect and store the spectral data in real time. It also had the characteristics of low noise and had a small electronic structure, which laid a foundation for the spectral data acquisition of underwater in-situ detection.","PeriodicalId":334634,"journal":{"name":"Optical Sensing and Imaging Technologies and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116140944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accuracy analysis for target location with no control point for the camera loaded on space-based platform 天基平台载相机无控制点目标定位精度分析
Pub Date : 2018-12-12 DOI: 10.1117/12.2502100
S. Kui, Zhang Guangdong, Zhang Wei, Peng Jianwei, Gao Bo
To a high resolution digital camera which works in visible light and is on the space-based platform flying in 500 km orbit, analyzed the principle of image acquisition, established the collinear equation and target location model from the system measured the pose of camera and single image without control points, and researched the method to calculate the geographic coordinate of target point. Analyzed the consisted factors of target location accuracy, and generated the formula for calculating target location accuracy based on the accuracy theory. For the cameras working in this mode, gave the elements of orientation and the parameters of camera, then obtained the target location accuracy is 16.1 meter through the simulation analysis to the model. The analysis to the target location accuracy provides a theoretical base for the practical use of the space camera. Analyzed the impact of the camera parameters and operation mode on the location accuracy, and put forward some measures to improve the target location accuracy.
{"title":"Accuracy analysis for target location with no control point for the camera loaded on space-based platform","authors":"S. Kui, Zhang Guangdong, Zhang Wei, Peng Jianwei, Gao Bo","doi":"10.1117/12.2502100","DOIUrl":"https://doi.org/10.1117/12.2502100","url":null,"abstract":"To a high resolution digital camera which works in visible light and is on the space-based platform flying in 500 km orbit, analyzed the principle of image acquisition, established the collinear equation and target location model from the system measured the pose of camera and single image without control points, and researched the method to calculate the geographic coordinate of target point. Analyzed the consisted factors of target location accuracy, and generated the formula for calculating target location accuracy based on the accuracy theory. For the cameras working in this mode, gave the elements of orientation and the parameters of camera, then obtained the target location accuracy is 16.1 meter through the simulation analysis to the model. The analysis to the target location accuracy provides a theoretical base for the practical use of the space camera. Analyzed the impact of the camera parameters and operation mode on the location accuracy, and put forward some measures to improve the target location accuracy.","PeriodicalId":334634,"journal":{"name":"Optical Sensing and Imaging Technologies and Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121550655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Matter: Volume 10846 封面:第10846卷
Pub Date : 2018-12-12 DOI: 10.1117/12.2521332
{"title":"Front Matter: Volume 10846","authors":"","doi":"10.1117/12.2521332","DOIUrl":"https://doi.org/10.1117/12.2521332","url":null,"abstract":"","PeriodicalId":334634,"journal":{"name":"Optical Sensing and Imaging Technologies and Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133737459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A green-band Scheimpflug lidar system: feasibility studies for atmospheric remote sensing 一种绿波段激光雷达系统:用于大气遥感的可行性研究
Pub Date : 2018-12-12 DOI: 10.1117/12.2503903
L. Mei, Zheng Kong, Peng Guan
This work demonstrates a green-band Scheimpflug lidar system by employing a high-power continuous-wave 520-nm laser diode as the laser source and an image sensor as the detector. Atmospheric remote measurement was continuously performed from October 28th to November 3rd on a near horizontal path, while a severe haze occurred during this period. The time-range backscattering map is obtained and the distribution of the atmospheric extinction coefficient is retrieved from the lidar signals based on the Fernald inversion algorithm. The spatial-averaged aerosol extinction coefficient shows good linearity with the PM10/PM2.5 concentrations measured by a local national pollution monitoring station.
{"title":"A green-band Scheimpflug lidar system: feasibility studies for atmospheric remote sensing","authors":"L. Mei, Zheng Kong, Peng Guan","doi":"10.1117/12.2503903","DOIUrl":"https://doi.org/10.1117/12.2503903","url":null,"abstract":"This work demonstrates a green-band Scheimpflug lidar system by employing a high-power continuous-wave 520-nm laser diode as the laser source and an image sensor as the detector. Atmospheric remote measurement was continuously performed from October 28th to November 3rd on a near horizontal path, while a severe haze occurred during this period. The time-range backscattering map is obtained and the distribution of the atmospheric extinction coefficient is retrieved from the lidar signals based on the Fernald inversion algorithm. The spatial-averaged aerosol extinction coefficient shows good linearity with the PM10/PM2.5 concentrations measured by a local national pollution monitoring station.","PeriodicalId":334634,"journal":{"name":"Optical Sensing and Imaging Technologies and Applications","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129135857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Optical Sensing and Imaging Technologies and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1