首页 > 最新文献

Terahertz Emitters, Receivers, and Applications XIV最新文献

英文 中文
3D printing compatible multimode terahertz negative curvature hollow-core fibers 3D打印兼容多模太赫兹负曲率空心纤维
Pub Date : 2023-10-06 DOI: 10.1117/12.2677632
Santiago Armas, J. Lombardo, Ian Ramirez, Faisal Algethmi, Allison M. Marn, A. Akosman
This study presents a systematic approach for designing and fabricating a new type of Terahertz optical fiber using 3D printing technology. Negative curvature optical fibers with multiple nested-tubes were designed using an FEM-based electromagnetic solver. The number of supported modes was found to increase significantly with utilization of more tubes. The fibers with tube thicknesses of 0.09 mm and core diameters of 3 mm and 8 mm were fabricated using a UV resin-based 3D printer. An imaging setup was built to confirm the geometrical properties. This study demonstrates the feasibility of using 3D printing to fabricate functional Terahertz optical fibers.
{"title":"3D printing compatible multimode terahertz negative curvature hollow-core fibers","authors":"Santiago Armas, J. Lombardo, Ian Ramirez, Faisal Algethmi, Allison M. Marn, A. Akosman","doi":"10.1117/12.2677632","DOIUrl":"https://doi.org/10.1117/12.2677632","url":null,"abstract":"This study presents a systematic approach for designing and fabricating a new type of Terahertz optical fiber using 3D printing technology. Negative curvature optical fibers with multiple nested-tubes were designed using an FEM-based electromagnetic solver. The number of supported modes was found to increase significantly with utilization of more tubes. The fibers with tube thicknesses of 0.09 mm and core diameters of 3 mm and 8 mm were fabricated using a UV resin-based 3D printer. An imaging setup was built to confirm the geometrical properties. This study demonstrates the feasibility of using 3D printing to fabricate functional Terahertz optical fibers.","PeriodicalId":338970,"journal":{"name":"Terahertz Emitters, Receivers, and Applications XIV","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114384032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of 3D printing compatible THz chemical sensing platform using negative curvature fibers with elliptical cladding elements 椭圆包层负曲率光纤3D打印兼容太赫兹化学传感平台研究
Pub Date : 2023-10-06 DOI: 10.1117/12.2677643
Venus Fu, Viannely Francisco, A. Akosman
In this study, a 3D printing compatible THz chemical sensing platform using negative curvature fibers was numerically investigated. Since the negative curvature design of the fiber allows spectral sensitivity based on the refractive index of the fiber core area, high sensitivities for liquid chemical sensing are observed. The fibers with elliptical tube cladding elements made of UV epoxy resin were designed using a finite element based electromagnetic solver to optimize the confinement and material losses, as well as to control polarization-based sensing by asymmetrical placement of tubes. By analyzing both confinement and material losses for different cladding structures, high sensitivities (>98%) for the detection of ethanol and benzene at an operational frequency of 1 THz are achieved. In order to calculate sensitivity values, the power fraction between the core and cladding areas were computed, and dispersion coefficients were also analyzed in the designed fibers. Using a UV resin-based 3D printer, the designs with a core diameter of 3 mm and tube thicknesses of 0.1 mm were fabricated, and the feasibility of using 3D printing was investigated using image analysis. Overall, the optimized negative curvature fiber design with elliptical cladding elements allowed improved sensitivities for chemical sensing applications. The use of 3D printing technology offers potential for cost-effective and efficient fabrication of THz chemical sensing platforms.
{"title":"Investigation of 3D printing compatible THz chemical sensing platform using negative curvature fibers with elliptical cladding elements","authors":"Venus Fu, Viannely Francisco, A. Akosman","doi":"10.1117/12.2677643","DOIUrl":"https://doi.org/10.1117/12.2677643","url":null,"abstract":"In this study, a 3D printing compatible THz chemical sensing platform using negative curvature fibers was numerically investigated. Since the negative curvature design of the fiber allows spectral sensitivity based on the refractive index of the fiber core area, high sensitivities for liquid chemical sensing are observed. The fibers with elliptical tube cladding elements made of UV epoxy resin were designed using a finite element based electromagnetic solver to optimize the confinement and material losses, as well as to control polarization-based sensing by asymmetrical placement of tubes. By analyzing both confinement and material losses for different cladding structures, high sensitivities (>98%) for the detection of ethanol and benzene at an operational frequency of 1 THz are achieved. In order to calculate sensitivity values, the power fraction between the core and cladding areas were computed, and dispersion coefficients were also analyzed in the designed fibers. Using a UV resin-based 3D printer, the designs with a core diameter of 3 mm and tube thicknesses of 0.1 mm were fabricated, and the feasibility of using 3D printing was investigated using image analysis. Overall, the optimized negative curvature fiber design with elliptical cladding elements allowed improved sensitivities for chemical sensing applications. The use of 3D printing technology offers potential for cost-effective and efficient fabrication of THz chemical sensing platforms.","PeriodicalId":338970,"journal":{"name":"Terahertz Emitters, Receivers, and Applications XIV","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115854783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Terahertz Emitters, Receivers, and Applications XIV
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1