首页 > 最新文献

International Workshop on Computer Architectures for Machine Perception最新文献

英文 中文
PGAC: A Parallel Genetic Algorithm for Data Clustering PGAC:一种数据聚类的并行遗传算法
Pub Date : 2005-07-04 DOI: 10.1109/CAMP.2005.41
Giosuè Lo Bosco
Cluster analysis is a valuable tool for exploratory pattern analysis, especially when very little a priori knowledge about the data is available. Distributed systems, based on high speed intranet connections, provide new tools in order to design new and faster clustering algorithms. Here, a parallel genetic algorithm for clustering called PGAC is described. The used strategy of parallelization is the island model paradigm where different populations of chromosomes (called demes) evolve locally to each processor and from time to time some individuals are moved from one deme to another. Experiments have been performed for testing the benefits of the parallelisation paradigm in terms of computation time and correctness of the solution.
对于探索性模式分析来说,聚类分析是一个很有价值的工具,特别是当关于数据的先验知识非常少的时候。基于高速内部网连接的分布式系统为设计新的更快的聚类算法提供了新的工具。本文描述了一种用于聚类的并行遗传算法PGAC。使用的并行化策略是岛模型范式,其中不同的染色体种群(称为deme)在每个处理器中局部进化,并且不时地将一些个体从一个deme移到另一个deme。已经进行了实验,以测试并行化范式在计算时间和解决方案正确性方面的好处。
{"title":"PGAC: A Parallel Genetic Algorithm for Data Clustering","authors":"Giosuè Lo Bosco","doi":"10.1109/CAMP.2005.41","DOIUrl":"https://doi.org/10.1109/CAMP.2005.41","url":null,"abstract":"Cluster analysis is a valuable tool for exploratory pattern analysis, especially when very little a priori knowledge about the data is available. Distributed systems, based on high speed intranet connections, provide new tools in order to design new and faster clustering algorithms. Here, a parallel genetic algorithm for clustering called PGAC is described. The used strategy of parallelization is the island model paradigm where different populations of chromosomes (called demes) evolve locally to each processor and from time to time some individuals are moved from one deme to another. Experiments have been performed for testing the benefits of the parallelisation paradigm in terms of computation time and correctness of the solution.","PeriodicalId":340151,"journal":{"name":"International Workshop on Computer Architectures for Machine Perception","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130951216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Reinforcement Learning for P2P Searching P2P搜索的强化学习
Pub Date : 2005-07-04 DOI: 10.1109/CAMP.2005.45
L. Gatani, G. Re, A. Urso, S. Gaglio
For a peer-to-peer (P2P) system holding massive amount of data, an efficient and scalable search for resource sharing is a key determinant to its practical usage. Unstructured P2P networks avoid the limitations of centralized systems and the drawbacks of a highly structured approach, because they impose few constraints on topology and data placement, and they support highly versatile search mechanisms. However their search algorithms are usually based on simple flooding schemes, showing severe inefficiencies. In this paper, to address this major limitation, we propose and evaluate the adoption of a local adaptive routing protocol. The routing algorithm adopts a simple Reinforcement Learning scheme (driven by query interactions among neighbors), in order to dynamically adapt the topology to peer interests. Preliminaries evaluations show that the approach is able to dynamically group peer nodes in clusters containing peers with shared interests and organized into a small world network.
对于存储大量数据的P2P系统,高效、可扩展的资源共享搜索是其实际使用的关键决定因素。非结构化的P2P网络避免了集中式系统的限制和高度结构化方法的缺点,因为它们对拓扑和数据放置施加的约束很少,并且它们支持高度通用的搜索机制。然而,他们的搜索算法通常基于简单的泛洪方案,显示出严重的低效率。在本文中,为了解决这一主要限制,我们提出并评估了一种本地自适应路由协议的采用。路由算法采用一种简单的强化学习方案(由邻居之间的查询交互驱动),以动态地调整拓扑以适应邻居的兴趣。初步评价表明,该方法能够将具有共同兴趣的节点动态分组,并组织成一个小世界网络。
{"title":"Reinforcement Learning for P2P Searching","authors":"L. Gatani, G. Re, A. Urso, S. Gaglio","doi":"10.1109/CAMP.2005.45","DOIUrl":"https://doi.org/10.1109/CAMP.2005.45","url":null,"abstract":"For a peer-to-peer (P2P) system holding massive amount of data, an efficient and scalable search for resource sharing is a key determinant to its practical usage. Unstructured P2P networks avoid the limitations of centralized systems and the drawbacks of a highly structured approach, because they impose few constraints on topology and data placement, and they support highly versatile search mechanisms. However their search algorithms are usually based on simple flooding schemes, showing severe inefficiencies. In this paper, to address this major limitation, we propose and evaluate the adoption of a local adaptive routing protocol. The routing algorithm adopts a simple Reinforcement Learning scheme (driven by query interactions among neighbors), in order to dynamically adapt the topology to peer interests. Preliminaries evaluations show that the approach is able to dynamically group peer nodes in clusters containing peers with shared interests and organized into a small world network.","PeriodicalId":340151,"journal":{"name":"International Workshop on Computer Architectures for Machine Perception","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2005-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132979113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
International Workshop on Computer Architectures for Machine Perception
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1