首页 > 最新文献

IPAC 21, 24-28 May 2021, Campinas, SP, Brazil最新文献

英文 中文
Simulation Studies on the Interactions of Electron Beam with Wastewater 电子束与废水相互作用的模拟研究
Pub Date : 2021-05-01 DOI: 10.18429/JACOW-IPAC2021-WEPAB255
Xi Li, H. Baumgart, G. Ciovati, F. Hannon, Shaoheng Wang
High energy electron beam irradiation is capable of removing harmful organic compounds from industrial manufacturing, which are hard to be degraded by the conventional wastewater treatment methods. This paper utilizes FLUKA code to evaluate the electron beam-wastewater interaction effects with different energy, space and divergence distributions of the electron beam. With 8 MeV average energy, the electron beam exits from a 0.0127 cm thick titanium window, travels through a 4.3 cm distance in air and through a second 0.0127 cm thick stainless sample container window with 2.43 cm radius, and finally is injected into the wastewater sample container, which has a volume of around 75 cubic cm. The distributions of the electron beam are obtained from the GPT (General Particle Tracer) simulations for the UITF (Upgraded Injector Test Facility) in Jefferson lab. By varying the parameters of the electron beam, the dose distributions through the water, the contributions from the electrons and bremsstrahlung photons are scored and compared. It is found that a spatially uniform electron beam results for the case of the most uniform dose distribution and the electrons are the main source for the dose. In addition, the electron differential fluence through the multiple planes of the has been modelled, which provides the base for the further electron beam requirements study.
高能电子束辐照能够去除工业制造中传统废水处理方法难以降解的有害有机化合物。本文利用FLUKA程序对不同能量、空间和发散分布的电子束-废水相互作用效果进行了评价。电子束以8 MeV的平均能量从0.0127 cm厚的钛合金窗口出来,在空气中穿过4.3 cm的距离,再穿过半径为2.43 cm的另一个0.0127 cm厚的不锈钢样品容器窗口,最后注入到体积约为75立方cm的废水样品容器中。通过对杰斐逊实验室UITF(升级注入器测试装置)的GPT(一般粒子示踪剂)模拟,得到了电子束的分布。通过改变电子束的参数,对水中的剂量分布、电子和轫致辐射光子的贡献进行评分和比较。结果表明,在剂量分布最均匀的情况下,产生空间均匀的电子束,电子是剂量的主要来源。此外,还建立了电子在不同平面上的差分通量模型,为进一步研究电子束需求提供了基础。
{"title":"Simulation Studies on the Interactions of Electron Beam with Wastewater","authors":"Xi Li, H. Baumgart, G. Ciovati, F. Hannon, Shaoheng Wang","doi":"10.18429/JACOW-IPAC2021-WEPAB255","DOIUrl":"https://doi.org/10.18429/JACOW-IPAC2021-WEPAB255","url":null,"abstract":"High energy electron beam irradiation is capable of removing harmful organic compounds from industrial manufacturing, which are hard to be degraded by the conventional wastewater treatment methods. This paper utilizes FLUKA code to evaluate the electron beam-wastewater interaction effects with different energy, space and divergence distributions of the electron beam. With 8 MeV average energy, the electron beam exits from a 0.0127 cm thick titanium window, travels through a 4.3 cm distance in air and through a second 0.0127 cm thick stainless sample container window with 2.43 cm radius, and finally is injected into the wastewater sample container, which has a volume of around 75 cubic cm. The distributions of the electron beam are obtained from the GPT (General Particle Tracer) simulations for the UITF (Upgraded Injector Test Facility) in Jefferson lab. By varying the parameters of the electron beam, the dose distributions through the water, the contributions from the electrons and bremsstrahlung photons are scored and compared. It is found that a spatially uniform electron beam results for the case of the most uniform dose distribution and the electrons are the main source for the dose. In addition, the electron differential fluence through the multiple planes of the has been modelled, which provides the base for the further electron beam requirements study.","PeriodicalId":345367,"journal":{"name":"IPAC 21, 24-28 May 2021, Campinas, SP, Brazil","volume":"182 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116456445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a 10 MeV beamline at the Upgraded Injector Test Facility for e-beam irradiation 电子束辐照升级喷射器试验台10 MeV束流线设计
Pub Date : 2021-05-01 DOI: 10.18429/JACOW-IPAC2021-WEPAB254
Xi Li, H. Baumgart, G. Ciovati, F. Hannon, Shaoheng Wang
Electron beam irradiation with energy less than or close to 10 MeV is suitable and sustainable for the wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV. To investigate degradation of the organic compound pollutants, a wastewater treatment beamline at UITF has been designed by using the code GPT (General Particle Tracer). The electron beam is assumed to have 8 MeV electron energy and the transverse radius of sigma around 0.8 to 0.9 cm. It has been found that the rms (by second central moment) energy spread induced by the accelerating cavity is less than 74.5 keV in the simulations. The space charge effect doesn’t affect the beam quality for 100 nA beam current.
以小于或接近10兆电子伏特的能量进行电子束辐照是适宜的、可持续的废水处理方法。杰斐逊实验室的升级注入器测试设备(UITF)是一个连续波超导直线加速器,能够提供高达10兆电子伏特的电子束能量。为了研究有机化合物污染物的降解,使用代码GPT(一般粒子示踪剂)设计了utf废水处理光束线。假设电子束的电子能量为8mev,横向半径约为0.8 ~ 0.9 cm。模拟结果表明,加速腔诱导的能量扩散均方根(以第二中心矩计)小于74.5 keV。当束流为100na时,空间电荷效应不影响束流质量。
{"title":"Design of a 10 MeV beamline at the Upgraded Injector Test Facility for e-beam irradiation","authors":"Xi Li, H. Baumgart, G. Ciovati, F. Hannon, Shaoheng Wang","doi":"10.18429/JACOW-IPAC2021-WEPAB254","DOIUrl":"https://doi.org/10.18429/JACOW-IPAC2021-WEPAB254","url":null,"abstract":"Electron beam irradiation with energy less than or close to 10 MeV is suitable and sustainable for the wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV. To investigate degradation of the organic compound pollutants, a wastewater treatment beamline at UITF has been designed by using the code GPT (General Particle Tracer). The electron beam is assumed to have 8 MeV electron energy and the transverse radius of sigma around 0.8 to 0.9 cm. It has been found that the rms (by second central moment) energy spread induced by the accelerating cavity is less than 74.5 keV in the simulations. The space charge effect doesn’t affect the beam quality for 100 nA beam current.","PeriodicalId":345367,"journal":{"name":"IPAC 21, 24-28 May 2021, Campinas, SP, Brazil","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121978926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IPAC 21, 24-28 May 2021, Campinas, SP, Brazil
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1