Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-8066-9.ch019
G. Omenn
This chapter wraps up by discussing the crucial role played by public health specialists who must reconcile traditional public health concerns of health inequality and equity with safe and effective health interventions and diagnostics that meet individual health needs. Since most genetic diseases in the realm of public health are an interplay of different genetic, lifestyle, and environmental factors, genomic science has given greater emphasis to the importance of molecular and cellular mechanisms in health and disease. New biological knowledge must be integrated with the social and environmental models to improve health at individual and population levels. Public health specialists must now be able to integrate genome-based knowledge into public health in a responsible, ethical, and effective way and anticipate the increase in the health service requirements likely to occur in the future. The foundational pillars of bioethics (beneficence, non-maleficence, autonomy, and justice) must be protected by all public health stakeholders.
{"title":"Genetics and Public Health","authors":"G. Omenn","doi":"10.4018/978-1-5225-8066-9.ch019","DOIUrl":"https://doi.org/10.4018/978-1-5225-8066-9.ch019","url":null,"abstract":"This chapter wraps up by discussing the crucial role played by public health specialists who must reconcile traditional public health concerns of health inequality and equity with safe and effective health interventions and diagnostics that meet individual health needs. Since most genetic diseases in the realm of public health are an interplay of different genetic, lifestyle, and environmental factors, genomic science has given greater emphasis to the importance of molecular and cellular mechanisms in health and disease. New biological knowledge must be integrated with the social and environmental models to improve health at individual and population levels. Public health specialists must now be able to integrate genome-based knowledge into public health in a responsible, ethical, and effective way and anticipate the increase in the health service requirements likely to occur in the future. The foundational pillars of bioethics (beneficence, non-maleficence, autonomy, and justice) must be protected by all public health stakeholders.","PeriodicalId":346048,"journal":{"name":"Examining the Causal Relationship Between Genes, Epigenetics, and Human Health","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126509767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-8066-9.ch012
This chapter focuses on the Human Genome Project (HGP), which determined that humans have between 20,000 to 25,000 protein-coding genes and only about 1.5% of the genome codes for proteins, rRNA, and tRNA. The remainder once referred as “junk DNA” is today known to be crucial to survival of the species. Research indicates that genes are not contiguous, and some genes occur within the introns of other genes; some genes can overlap with each other either on the same or on different DNA strands with shared coding and/or regulatory elements; plus, the vast majority of human genes undergo alternative splicing leading to different proteins being encoded by the same gene. Advances in genomics and gene sequencing technologies have created exceptional opportunities for the delivery of personalized medical care. Clinical genetic testing has been helpful in identifying gene variants associated with risks for a number of diseases and health conditions.
{"title":"Genomics and Genetic Testing","authors":"","doi":"10.4018/978-1-5225-8066-9.ch012","DOIUrl":"https://doi.org/10.4018/978-1-5225-8066-9.ch012","url":null,"abstract":"This chapter focuses on the Human Genome Project (HGP), which determined that humans have between 20,000 to 25,000 protein-coding genes and only about 1.5% of the genome codes for proteins, rRNA, and tRNA. The remainder once referred as “junk DNA” is today known to be crucial to survival of the species. Research indicates that genes are not contiguous, and some genes occur within the introns of other genes; some genes can overlap with each other either on the same or on different DNA strands with shared coding and/or regulatory elements; plus, the vast majority of human genes undergo alternative splicing leading to different proteins being encoded by the same gene. Advances in genomics and gene sequencing technologies have created exceptional opportunities for the delivery of personalized medical care. Clinical genetic testing has been helpful in identifying gene variants associated with risks for a number of diseases and health conditions.","PeriodicalId":346048,"journal":{"name":"Examining the Causal Relationship Between Genes, Epigenetics, and Human Health","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114086445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-8066-9.ch018
The nervous system (NS) is comprised of nerve cells (neurons), which transfer and process information, and neuroglia (or glial cells), which provide the supportive framework neurons need to function effectively. There are two divisions of the nervous system: central (CNS) and peripheral (PNS). The CNS consists of the brain and spinal cord and forms an intricate network of specialised cells that are responsible for coordinating all bodily functions. The PNS delivers sensory information from peripheral sensory tissues and systems to the CNS and carries motor commands from the CNS to peripheral tissues. This chapter discusses 15 diseases that directly affect the nervous system mostly caused by mutations in a single gene, with others having more complex modes of inheritance. They include Alzheimer's Disease, epilepsy, essential tremor, familial Mediterranean fever, Friedreich's ataxia, Huntington's disease, maple syrup syndrome, Menkes disease, narcolepsy, Parkinson's Disease, phenylketonuria, Refsum disease, spinal muscular atrophy, tangier disease, and spinocerebellar ataxia.
{"title":"Human Nervous System Disorders","authors":"","doi":"10.4018/978-1-5225-8066-9.ch018","DOIUrl":"https://doi.org/10.4018/978-1-5225-8066-9.ch018","url":null,"abstract":"The nervous system (NS) is comprised of nerve cells (neurons), which transfer and process information, and neuroglia (or glial cells), which provide the supportive framework neurons need to function effectively. There are two divisions of the nervous system: central (CNS) and peripheral (PNS). The CNS consists of the brain and spinal cord and forms an intricate network of specialised cells that are responsible for coordinating all bodily functions. The PNS delivers sensory information from peripheral sensory tissues and systems to the CNS and carries motor commands from the CNS to peripheral tissues. This chapter discusses 15 diseases that directly affect the nervous system mostly caused by mutations in a single gene, with others having more complex modes of inheritance. They include Alzheimer's Disease, epilepsy, essential tremor, familial Mediterranean fever, Friedreich's ataxia, Huntington's disease, maple syrup syndrome, Menkes disease, narcolepsy, Parkinson's Disease, phenylketonuria, Refsum disease, spinal muscular atrophy, tangier disease, and spinocerebellar ataxia.","PeriodicalId":346048,"journal":{"name":"Examining the Causal Relationship Between Genes, Epigenetics, and Human Health","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127485957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-8066-9.ch015
The digestive system includes the structures and organs involved in processing of foods required for growth, development, maintenance, and body repair. Most diseases affecting this system are due to infections from bacteria, viruses, protozoa, and fungi, while others are hereditary. The ear, nose, and throat (ENT) system is a complex set of structures sharing slightly interrelated mechanisms of operation. While some disorders of the ENT are hereditary, environmental influences play a big role. Diseases that affect eyesight primarily centre on three layers of the eye (sclera, choroid, and retina) which make eyesight possible. Disorders of metabolism occur when a crucial enzyme is disabled, or if a control mechanism for a metabolic pathway is affected. The chapter focuses on 14 diseases with suspected genetic causes including cystic fibrosis, diabetes, glucose-galactose malabsorption, hemochromatosis, obesity, Wilson's Disease, Zellweger syndrome, deafness, Pendred syndrome, Best Disease, glaucoma, gyrate atrophy, male pattern baldness, and Alport syndrome.
{"title":"Digestive, Ear/Nose/Throat, and Eye Disorders","authors":"","doi":"10.4018/978-1-5225-8066-9.ch015","DOIUrl":"https://doi.org/10.4018/978-1-5225-8066-9.ch015","url":null,"abstract":"The digestive system includes the structures and organs involved in processing of foods required for growth, development, maintenance, and body repair. Most diseases affecting this system are due to infections from bacteria, viruses, protozoa, and fungi, while others are hereditary. The ear, nose, and throat (ENT) system is a complex set of structures sharing slightly interrelated mechanisms of operation. While some disorders of the ENT are hereditary, environmental influences play a big role. Diseases that affect eyesight primarily centre on three layers of the eye (sclera, choroid, and retina) which make eyesight possible. Disorders of metabolism occur when a crucial enzyme is disabled, or if a control mechanism for a metabolic pathway is affected. The chapter focuses on 14 diseases with suspected genetic causes including cystic fibrosis, diabetes, glucose-galactose malabsorption, hemochromatosis, obesity, Wilson's Disease, Zellweger syndrome, deafness, Pendred syndrome, Best Disease, glaucoma, gyrate atrophy, male pattern baldness, and Alport syndrome.","PeriodicalId":346048,"journal":{"name":"Examining the Causal Relationship Between Genes, Epigenetics, and Human Health","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127832091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-8066-9.ch002
This chapter focuses on the chemical foundations of life. Matter is made up of elements classified into major and minor elements. Elements are made up of atoms which in turn are made up of sub-atomic particles called protons, electrons and neutrons. Chemical bonds are unions of electron structures when atoms lose, gain or share one or more electrons with other atoms. Water is important to life and has unique properties making it ideal to life on Earth. The pH of a substance is a measure of the balance between H+ and OH- ions ranging from 0 to 14 on a log scale. Most metabolic reactions that maintain life occur in living organisms involve five types of chemical reactions. Macromolecules are large complex molecules made up of repeating units (monomers) of sometimes the same molecule or of different molecules joined together by chemical bonds to form very long chains (polymers).
{"title":"Life and Its Chemical Foundations","authors":"","doi":"10.4018/978-1-5225-8066-9.ch002","DOIUrl":"https://doi.org/10.4018/978-1-5225-8066-9.ch002","url":null,"abstract":"This chapter focuses on the chemical foundations of life. Matter is made up of elements classified into major and minor elements. Elements are made up of atoms which in turn are made up of sub-atomic particles called protons, electrons and neutrons. Chemical bonds are unions of electron structures when atoms lose, gain or share one or more electrons with other atoms. Water is important to life and has unique properties making it ideal to life on Earth. The pH of a substance is a measure of the balance between H+ and OH- ions ranging from 0 to 14 on a log scale. Most metabolic reactions that maintain life occur in living organisms involve five types of chemical reactions. Macromolecules are large complex molecules made up of repeating units (monomers) of sometimes the same molecule or of different molecules joined together by chemical bonds to form very long chains (polymers).","PeriodicalId":346048,"journal":{"name":"Examining the Causal Relationship Between Genes, Epigenetics, and Human Health","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134103778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-8066-9.ch003
To qualify as living, units of life called cells must be identifiable, distinct, and demonstrate most or all the qualities of life. Cells tremendously vary in size from about 0.5-500 micrometers. The smallest known single cells are those of bacteria while most higher organisms have multiple cells differentiated and functioning together as a single system. Communication in cells involves cell signaling, reception, transduction, and response. Signals received at the surface of the cell from other cells, or from blood or tissue fluid must be transferred to various parts of the cell and a cell response initiated. Cells actively take in raw materials which they use to function and perform maintenance activities. Collectively these activities are called cellular metabolism catalysed by enzymes. To avoid chaos in the body, cells maintain control of what reactions are needed all the time, needed only certain times or needed very rarely. This chapter explores the cellular basis of life.
{"title":"Cellular Basis of Life","authors":"","doi":"10.4018/978-1-5225-8066-9.ch003","DOIUrl":"https://doi.org/10.4018/978-1-5225-8066-9.ch003","url":null,"abstract":"To qualify as living, units of life called cells must be identifiable, distinct, and demonstrate most or all the qualities of life. Cells tremendously vary in size from about 0.5-500 micrometers. The smallest known single cells are those of bacteria while most higher organisms have multiple cells differentiated and functioning together as a single system. Communication in cells involves cell signaling, reception, transduction, and response. Signals received at the surface of the cell from other cells, or from blood or tissue fluid must be transferred to various parts of the cell and a cell response initiated. Cells actively take in raw materials which they use to function and perform maintenance activities. Collectively these activities are called cellular metabolism catalysed by enzymes. To avoid chaos in the body, cells maintain control of what reactions are needed all the time, needed only certain times or needed very rarely. This chapter explores the cellular basis of life.","PeriodicalId":346048,"journal":{"name":"Examining the Causal Relationship Between Genes, Epigenetics, and Human Health","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117161551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}