Pub Date : 2022-01-26DOI: 10.5772/intechopen.98829
H. Sekhane
Micro-grids (μ-grids) are small-scale power grids, specially designed to provide low voltage (LV) power supply to a small number of consumers. These networks include: different production units (energy resources), storage devices and local controllable loads, which have the possibility of being controlled. In this chapter, we will study in detail the constitution of an electrical micro-grid, their two operating modes (connected mode and islanded mode), and their controls. On the other hand, we will also discuss on hybrid micro-grids and their advantages. We will also discuss for the monitoring and data logging products used in micro-grids and hybrid micro-grids. Finally, at the end of this chapter we will ended with the importance of micro-grids systems.
{"title":"An Overview Study of Micro-Grids for Self-Production in Renewable Energies","authors":"H. Sekhane","doi":"10.5772/intechopen.98829","DOIUrl":"https://doi.org/10.5772/intechopen.98829","url":null,"abstract":"Micro-grids (μ-grids) are small-scale power grids, specially designed to provide low voltage (LV) power supply to a small number of consumers. These networks include: different production units (energy resources), storage devices and local controllable loads, which have the possibility of being controlled. In this chapter, we will study in detail the constitution of an electrical micro-grid, their two operating modes (connected mode and islanded mode), and their controls. On the other hand, we will also discuss on hybrid micro-grids and their advantages. We will also discuss for the monitoring and data logging products used in micro-grids and hybrid micro-grids. Finally, at the end of this chapter we will ended with the importance of micro-grids systems.","PeriodicalId":354535,"journal":{"name":"Electric Power Conversion and Micro-Grids","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129551119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-26DOI: 10.5772/intechopen.98551
Tapparit Bangtit
This study presents the microgrid controller with an energy management strategy for an off-grid microgrid, consisting of an energy storage system (ESS), photovoltaic system (PV), micro-hydro, and diesel generator. The aim is to investigate the improved electrical distribution and off-grid operation in remote areas. The off-grid microgrid model and the control algorithms developed using MATLAB Simulink and State flow. The energy management system is focusing on the state of charge of the energy storage system. The microgrid controller controls the operation mode and power generation from the distributed generations’ local controller, i.e., PV, micro-hydro, and diesel. It also controls the smart meters of the loads to be connected or disconnected to the microgrid. The simulation results show that the proposed microgrid control can control the target off-grid microgrid in given possible scenarios. The off-grid microgrid managed to meet the energy demand with the lowest power outage and the diesel generator operation’s lowest cost.
{"title":"Design and Simulation of Low-Cost Microgrid Controller in Off-Grid Remote Areas","authors":"Tapparit Bangtit","doi":"10.5772/intechopen.98551","DOIUrl":"https://doi.org/10.5772/intechopen.98551","url":null,"abstract":"This study presents the microgrid controller with an energy management strategy for an off-grid microgrid, consisting of an energy storage system (ESS), photovoltaic system (PV), micro-hydro, and diesel generator. The aim is to investigate the improved electrical distribution and off-grid operation in remote areas. The off-grid microgrid model and the control algorithms developed using MATLAB Simulink and State flow. The energy management system is focusing on the state of charge of the energy storage system. The microgrid controller controls the operation mode and power generation from the distributed generations’ local controller, i.e., PV, micro-hydro, and diesel. It also controls the smart meters of the loads to be connected or disconnected to the microgrid. The simulation results show that the proposed microgrid control can control the target off-grid microgrid in given possible scenarios. The off-grid microgrid managed to meet the energy demand with the lowest power outage and the diesel generator operation’s lowest cost.","PeriodicalId":354535,"journal":{"name":"Electric Power Conversion and Micro-Grids","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123584168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-26DOI: 10.5772/intechopen.97229
Mohamed A. Ebrahim, Reham M. Abdel Fattah, Ebtisam M. Saied, Samir M. Abdel Maksoud, H. El Khashab
The collaboration of the various distributed generation (DG) units is required to meet the increasing electricity demand. To run parallel-connected inverters for microgrid load sharing, several control strategies have been developed. Among these methods, the droop control method was widely accepted in the research community due to the lack of important communication links between parallel-connected inverters to control the DG units within a microgrid. To help to solve the power-sharing process, keep to frequency and voltage constrained limits in islanded mode microgrid system. The parameter values must therefore be chosen accurately by using the optimization technique. Optimization techniques are a hot topic of researchers; hence This paper discusses the microgrid droop controller during islanding using the salp swarm inspired algorithm (SSIA). To obtain a better fine microgrid output reaction during islanding, SSIA-based droop control is used to optimally determine the PI gain and the coefficients of the prolapse control. The results of the simulation show that the SSIA-based droop control can control the power quality of the microgrid by ensuring that the keep to frequency and voltage constrained limits and deviation and proper power-sharing occurs during the microgrid island mode during a load change.
{"title":"Salp Swarm Optimization with Self-Adaptive Mechanism for Optimal Droop Control Design","authors":"Mohamed A. Ebrahim, Reham M. Abdel Fattah, Ebtisam M. Saied, Samir M. Abdel Maksoud, H. El Khashab","doi":"10.5772/intechopen.97229","DOIUrl":"https://doi.org/10.5772/intechopen.97229","url":null,"abstract":"The collaboration of the various distributed generation (DG) units is required to meet the increasing electricity demand. To run parallel-connected inverters for microgrid load sharing, several control strategies have been developed. Among these methods, the droop control method was widely accepted in the research community due to the lack of important communication links between parallel-connected inverters to control the DG units within a microgrid. To help to solve the power-sharing process, keep to frequency and voltage constrained limits in islanded mode microgrid system. The parameter values must therefore be chosen accurately by using the optimization technique. Optimization techniques are a hot topic of researchers; hence This paper discusses the microgrid droop controller during islanding using the salp swarm inspired algorithm (SSIA). To obtain a better fine microgrid output reaction during islanding, SSIA-based droop control is used to optimally determine the PI gain and the coefficients of the prolapse control. The results of the simulation show that the SSIA-based droop control can control the power quality of the microgrid by ensuring that the keep to frequency and voltage constrained limits and deviation and proper power-sharing occurs during the microgrid island mode during a load change.","PeriodicalId":354535,"journal":{"name":"Electric Power Conversion and Micro-Grids","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126927782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}