Pub Date : 2018-09-05DOI: 10.5772/INTECHOPEN.76936
A. Berestetskiy, S. Sokornova
Despite the urgent need for alternatives to chemicals in plant protection, biological her- bicides are not widely used as biofungicides and bioinsecticides. The review is devoted to connections between fungal biology, biochemistry, their ability to survive in extreme environment and development of effective mycoherbicides. Advanced studies on the production and stabilization of mycofungicides and mycoinsecticides were analyzed too in order to obtain ideas for the improvement of efficacy and technology of mycoherbi cides in the future. The analysis of research data published within last 20 years showed following trends. First, more attention is paid for production both effective and stress tolerant propagules especially based on the submerged fungal mycelium and its modi- fications (blastospores, chlamydospores and microsclerotia). Second, the construction of bioreactors, in particular, for solid-state fermentation is continuously being improved that allows producing highly stress tolerant fungal aerial conidia. Third, based on studies of biochemical mechanisms of viability of fungi in extreme environment, the approaches of stabilization and storage of fungal propagules were developed. However, the positive reply to the question, if biopesticides including mycoherbicides, will become a serious alternative to agrochemicals, will be possible when they demonstrate stable efficacy in the field conditions and safety for both environment and end users.
{"title":"Production and Stabilization of Mycoherbicides","authors":"A. Berestetskiy, S. Sokornova","doi":"10.5772/INTECHOPEN.76936","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76936","url":null,"abstract":"Despite the urgent need for alternatives to chemicals in plant protection, biological her- bicides are not widely used as biofungicides and bioinsecticides. The review is devoted to connections between fungal biology, biochemistry, their ability to survive in extreme environment and development of effective mycoherbicides. Advanced studies on the production and stabilization of mycofungicides and mycoinsecticides were analyzed too in order to obtain ideas for the improvement of efficacy and technology of mycoherbi cides in the future. The analysis of research data published within last 20 years showed following trends. First, more attention is paid for production both effective and stress tolerant propagules especially based on the submerged fungal mycelium and its modi- fications (blastospores, chlamydospores and microsclerotia). Second, the construction of bioreactors, in particular, for solid-state fermentation is continuously being improved that allows producing highly stress tolerant fungal aerial conidia. Third, based on studies of biochemical mechanisms of viability of fungi in extreme environment, the approaches of stabilization and storage of fungal propagules were developed. However, the positive reply to the question, if biopesticides including mycoherbicides, will become a serious alternative to agrochemicals, will be possible when they demonstrate stable efficacy in the field conditions and safety for both environment and end users.","PeriodicalId":358920,"journal":{"name":"Biological Approaches for Controlling Weeds","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115225262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-05DOI: 10.5772/INTECHOPEN.76704
M. Jørgensen
The tillage systems and performance of the operations have an important impact on the weed control. The primary goal for the tillage is to establish the best possible conditions for the crop establishment and growth under the given conditions as soil texture, mois- ture and so on. In addition, the tillage system also strongly influences the weed pressure and conditions for weed control. As tillage requires a substantial amount of fuel, and affects the leak of nitrogen and CO 2 from the soil, there is a big motivation in optimizing the tillage operations due to the local conditions in the field. A big challenge is how to sense the local conditions and information that are needed to optimize the tillage system for local treatment and intensity. This chapter focuses on how to optimize the tillage operations in a local adaptive approach aiming at the best possible weed control.
{"title":"The Effect of Tillage on the Weed Control: An Adaptive Approach","authors":"M. Jørgensen","doi":"10.5772/INTECHOPEN.76704","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76704","url":null,"abstract":"The tillage systems and performance of the operations have an important impact on the weed control. The primary goal for the tillage is to establish the best possible conditions for the crop establishment and growth under the given conditions as soil texture, mois- ture and so on. In addition, the tillage system also strongly influences the weed pressure and conditions for weed control. As tillage requires a substantial amount of fuel, and affects the leak of nitrogen and CO 2 from the soil, there is a big motivation in optimizing the tillage operations due to the local conditions in the field. A big challenge is how to sense the local conditions and information that are needed to optimize the tillage system for local treatment and intensity. This chapter focuses on how to optimize the tillage operations in a local adaptive approach aiming at the best possible weed control.","PeriodicalId":358920,"journal":{"name":"Biological Approaches for Controlling Weeds","volume":"133 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122991434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-05DOI: 10.5772/INTECHOPEN.79599
H. Raman, N. Shamaya, J. Pratley
Rapeseed (canola, Brassica napus L.) is the second major oilseed crop of the world and provides a source of healthy oil for human consumption, meal for stock markets and several other by-products. Several weed species afflict the sustainable production and quality of canola. Various agronomic practices such as crop rotation, stubble management (e.g. burning), minimum tillage, application of herbicides and cultivation of herbicide resistant varieties have been deployed to minimise yield losses. There is no doubt that herbicide-tolerant cultivars enable management of weeds which are difficult to control otherwise. However, widespread usage increases the risk of herbicide resistance. This is becoming a major impediment in sustaining high crop productivity. Allelopathic and weed competitive varieties are potential tools to reduce the dependence on herbicides and could be grown to suppress weed growth in commercial canola. Genetic variation and ‘proxy’ traits involved in both crop competition as well as allelopathy have been reported. Further research is required to link genetic variation in weed competition and allelopathy, and genetic/genomicmarker technologies to unravel effective alleles to expand breeding activity for weed interference in canola.
{"title":"Genetic Variation for Weed Competition and Allelopathy in Rapeseed (Brassica napus L.)","authors":"H. Raman, N. Shamaya, J. Pratley","doi":"10.5772/INTECHOPEN.79599","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79599","url":null,"abstract":"Rapeseed (canola, Brassica napus L.) is the second major oilseed crop of the world and provides a source of healthy oil for human consumption, meal for stock markets and several other by-products. Several weed species afflict the sustainable production and quality of canola. Various agronomic practices such as crop rotation, stubble management (e.g. burning), minimum tillage, application of herbicides and cultivation of herbicide resistant varieties have been deployed to minimise yield losses. There is no doubt that herbicide-tolerant cultivars enable management of weeds which are difficult to control otherwise. However, widespread usage increases the risk of herbicide resistance. This is becoming a major impediment in sustaining high crop productivity. Allelopathic and weed competitive varieties are potential tools to reduce the dependence on herbicides and could be grown to suppress weed growth in commercial canola. Genetic variation and ‘proxy’ traits involved in both crop competition as well as allelopathy have been reported. Further research is required to link genetic variation in weed competition and allelopathy, and genetic/genomicmarker technologies to unravel effective alleles to expand breeding activity for weed interference in canola.","PeriodicalId":358920,"journal":{"name":"Biological Approaches for Controlling Weeds","volume":"22 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123027866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-05DOI: 10.5772/INTECHOPEN.76219
O. Ani, O. Onu, G. Okoro, M. Uguru
Exotic plants in new ecosystems where they may be of no economic importance and where their original biological enemies may be absent become weeds, difficult to manage by crop farmers. They limit the productivity of the lands and hence affect crop development and yield. Efforts towards reducing reliance on herbicides and other methods for environmental, health, economic and sustainability reasons have led to increasing interest in the biological approach to controlling these weeds. This work therefore presents an overview of the biological approach to weed control with focus on the basic concepts, underlying principles, procedures and current practices, cases and causes of failure and successes. Specifically, this chapter has discussed the underlying principles, general procedures, reasons for relatively slow popularity and adoption of biological weed control, examples of successful biological control of weeds with introduced insects and pathogens, when is weed biological control successful?, things to consider when making the choice of agents to be introduced to control weeds and steps to identifying and introducing biological control agents.
{"title":"Overview of Biological Methods of Weed Control","authors":"O. Ani, O. Onu, G. Okoro, M. Uguru","doi":"10.5772/INTECHOPEN.76219","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76219","url":null,"abstract":"Exotic plants in new ecosystems where they may be of no economic importance and where their original biological enemies may be absent become weeds, difficult to manage by crop farmers. They limit the productivity of the lands and hence affect crop development and yield. Efforts towards reducing reliance on herbicides and other methods for environmental, health, economic and sustainability reasons have led to increasing interest in the biological approach to controlling these weeds. This work therefore presents an overview of the biological approach to weed control with focus on the basic concepts, underlying principles, procedures and current practices, cases and causes of failure and successes. Specifically, this chapter has discussed the underlying principles, general procedures, reasons for relatively slow popularity and adoption of biological weed control, examples of successful biological control of weeds with introduced insects and pathogens, when is weed biological control successful?, things to consider when making the choice of agents to be introduced to control weeds and steps to identifying and introducing biological control agents.","PeriodicalId":358920,"journal":{"name":"Biological Approaches for Controlling Weeds","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133890176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-05DOI: 10.5772/INTECHOPEN.74346
M. S. D. Oliveira, W. A. Costa, P. N. Bezerra, A. P. Filho, R. C. Junior
The control of invasive plants is still carried out with the use of synthetic chemical agents that may present high toxicity and, consequently, be harmful to humans and animals. In Brazil, especially in the Amazon, small producers use this kind of technique in a rustic way, with brushcuters or ire. In this sense, the search for natural agents with bioherbicide potential becomes necessary. Examples of these agents are the essential oils that over the years have been shown to be a viable alternative to weed control. Thus, this review aims to show the potentially phytotoxic activity of allelochemicals present in essential oils of diferent aromatic plants.
{"title":"Potentially Phytotoxic of Chemical Compounds Present in Essential Oil for Invasive Plants Control: A Mini-Review","authors":"M. S. D. Oliveira, W. A. Costa, P. N. Bezerra, A. P. Filho, R. C. Junior","doi":"10.5772/INTECHOPEN.74346","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74346","url":null,"abstract":"The control of invasive plants is still carried out with the use of synthetic chemical agents that may present high toxicity and, consequently, be harmful to humans and animals. In Brazil, especially in the Amazon, small producers use this kind of technique in a rustic way, with brushcuters or ire. In this sense, the search for natural agents with bioherbicide potential becomes necessary. Examples of these agents are the essential oils that over the years have been shown to be a viable alternative to weed control. Thus, this review aims to show the potentially phytotoxic activity of allelochemicals present in essential oils of diferent aromatic plants.","PeriodicalId":358920,"journal":{"name":"Biological Approaches for Controlling Weeds","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134094359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}