首页 > 最新文献

Journal of Statistics Applications and Probability最新文献

英文 中文
Bayesian Analysis of Longitudinal Ordinal Data with Missing Values Using Multivariate Probit Models. 利用多元概率模型对缺失值纵向有序数据进行贝叶斯分析。
Q3 Social Sciences Pub Date : 2025-05-01 DOI: 10.18576/jsap/140302
Xiao Zhang

In this paper, we propose efficient Bayesian methods to analyze longitudinal ordinal data with missing values using multivariate probit models. Longitudinal ordinal data with substantial missing values are ubiquitous in many scientific fields. Specifically, we develop the Markov chain Monte Carlo (MCMC) sampling methods based on the non-identifiable multivariate probit models and further compare their performance with the one based on the identifiable multivariate probit models. We carried out our investigation through simulation studies, which show that the proposed methods can handle substantial missing values and the method with marginalizing the redundant parameters based on the non-identifiable model outperforms the others in the mixing and convergences of the MCMC sampling components. We then present an application using data from the Russia Longitudinal Monitoring Survey-Higher School of Economics (RLMS-HSE).

在本文中,我们提出了有效的贝叶斯方法来分析具有缺失值的纵向有序数据。具有大量缺失值的纵向有序数据在许多科学领域普遍存在。具体而言,我们开发了基于不可识别多变量概率模型的马尔可夫链蒙特卡罗(MCMC)采样方法,并进一步将其与基于可识别多变量概率模型的采样方法进行了性能比较。通过仿真研究表明,所提出的方法可以处理大量缺失值,并且基于不可识别模型的冗余参数边缘化方法在MCMC采样分量的混合和收敛方面优于其他方法。然后,我们使用俄罗斯纵向监测调查-高等经济学院(RLMS-HSE)的数据提出了一个应用程序。
{"title":"Bayesian Analysis of Longitudinal Ordinal Data with Missing Values Using Multivariate Probit Models.","authors":"Xiao Zhang","doi":"10.18576/jsap/140302","DOIUrl":"https://doi.org/10.18576/jsap/140302","url":null,"abstract":"<p><p>In this paper, we propose efficient Bayesian methods to analyze longitudinal ordinal data with missing values using multivariate probit models. Longitudinal ordinal data with substantial missing values are ubiquitous in many scientific fields. Specifically, we develop the Markov chain Monte Carlo (MCMC) sampling methods based on the non-identifiable multivariate probit models and further compare their performance with the one based on the identifiable multivariate probit models. We carried out our investigation through simulation studies, which show that the proposed methods can handle substantial missing values and the method with marginalizing the redundant parameters based on the non-identifiable model outperforms the others in the mixing and convergences of the MCMC sampling components. We then present an application using data from the Russia Longitudinal Monitoring Survey-Higher School of Economics (RLMS-HSE).</p>","PeriodicalId":37070,"journal":{"name":"Journal of Statistics Applications and Probability","volume":"14 3","pages":"337-352"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381765/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144972671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Pathway Idea for Model Building. 模型构建的路径思路。
Q3 Social Sciences Pub Date : 2012-01-01 DOI: 10.12785/jsap/010102
A M Mathai, Panagis Moschopoulos

Models, mathematical or stochastic, which move from one functional form to another through pathway parameters, so that in between stages can be captured, are examined in this article. Models which move from generalized type-1 beta family to type-2 beta family, to generalized gamma family to generalized Mittag-Leffler family to Lévy distributions are examined here. It is known that one can likely find an approximate model for the data at hand whether the data are coming from biological, physical, engineering, social sciences or other areas. Different families of functions are connected through the pathway parameters and hence one will find a suitable member from within one of the families or in between stages of two families. Graphs are provided to show the movement of the different models showing thicker tails, thinner tails, right tail cut off etc.

通过路径参数从一种功能形式移动到另一种功能形式的数学或随机模型,以便在两个阶段之间可以捕获,本文将对此进行研究。本文研究了从广义1型β族到2型β族,从广义γ族到广义Mittag-Leffler族再到lsamvy分布的模型。众所周知,无论数据来自生物、物理、工程、社会科学还是其他领域,人们都可以为手头的数据找到一个近似模型。不同的功能家族通过路径参数连接起来,因此人们可以从一个家族或两个家族之间的阶段中找到合适的成员。图表显示了不同模型的运动,显示了较厚的尾巴,较薄的尾巴,右尾巴被切断等。
{"title":"A Pathway Idea for Model Building.","authors":"A M Mathai,&nbsp;Panagis Moschopoulos","doi":"10.12785/jsap/010102","DOIUrl":"https://doi.org/10.12785/jsap/010102","url":null,"abstract":"<p><p>Models, mathematical or stochastic, which move from one functional form to another through pathway parameters, so that in between stages can be captured, are examined in this article. Models which move from generalized type-1 beta family to type-2 beta family, to generalized gamma family to generalized Mittag-Leffler family to Lévy distributions are examined here. It is known that one can likely find an approximate model for the data at hand whether the data are coming from biological, physical, engineering, social sciences or other areas. Different families of functions are connected through the pathway parameters and hence one will find a suitable member from within one of the families or in between stages of two families. Graphs are provided to show the movement of the different models showing thicker tails, thinner tails, right tail cut off etc.</p>","PeriodicalId":37070,"journal":{"name":"Journal of Statistics Applications and Probability","volume":"1 1","pages":"15-20"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038346/pdf/nihms442823.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32385049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
Journal of Statistics Applications and Probability
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1