Pub Date : 2022-01-05DOI: 10.5772/intechopen.101689
J. Hassan, Md. Noor-E-Azam Khan, Md. Mijanur Rahman Rajib, Maksuratun Nahar Suborna, Jiasmin Akter, Md. Faisal Ahamed Hasan
Horticultural crops are highly nutritious and shared lion portion of our daily diet. These items are consumed in different ways according to their nature and processing processes. These days, a crucial concerning issue is arising globally to ensure nutrition security for huge population that leads to focus on production increase, quality improvement, food safety assurance, and processing strategies. Consequently, a large amount of waste generates in the processing industries, household kitchen, and supply chain of horticultural commodities that has led to a significant nutrition and economic loss, consequently creating environment pollution with extensive burden of landfills. However, these wastes showed magnificent potentiality of re-utilization in several industries owing to as rich source of different bioactive compounds and phytochemicals. Therefore, sustainable extraction methods and utilization strategies deserve the extensive investigations. This review paper extensively illustrates the horticultural waste generation options, sustainable recycling strategies, and potentiality of recycled products in different industries for betterment in population with the assurance of green environment and sustainable ecology.
{"title":"Sustainable Horticultural Waste Management: Industrial and Environmental Perspective","authors":"J. Hassan, Md. Noor-E-Azam Khan, Md. Mijanur Rahman Rajib, Maksuratun Nahar Suborna, Jiasmin Akter, Md. Faisal Ahamed Hasan","doi":"10.5772/intechopen.101689","DOIUrl":"https://doi.org/10.5772/intechopen.101689","url":null,"abstract":"Horticultural crops are highly nutritious and shared lion portion of our daily diet. These items are consumed in different ways according to their nature and processing processes. These days, a crucial concerning issue is arising globally to ensure nutrition security for huge population that leads to focus on production increase, quality improvement, food safety assurance, and processing strategies. Consequently, a large amount of waste generates in the processing industries, household kitchen, and supply chain of horticultural commodities that has led to a significant nutrition and economic loss, consequently creating environment pollution with extensive burden of landfills. However, these wastes showed magnificent potentiality of re-utilization in several industries owing to as rich source of different bioactive compounds and phytochemicals. Therefore, sustainable extraction methods and utilization strategies deserve the extensive investigations. This review paper extensively illustrates the horticultural waste generation options, sustainable recycling strategies, and potentiality of recycled products in different industries for betterment in population with the assurance of green environment and sustainable ecology.","PeriodicalId":371548,"journal":{"name":"Pectins [Working Title]","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124559887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-18DOI: 10.5772/intechopen.101521
Anna Lapomarda, A. de Acutis, C. De Maria, G. Vozzi
Tissue engineering (TE) is an interdisciplinary field that was introduced from the necessity of finding alternative approaches to transplantation for the treatment of damaged and diseased organs or tissues. Unlike the conventional procedures, TE aims at inducing the regeneration of injured tissues through the implantation of customized and functional engineered tissues, built on the so-called ‘scaffolds’. These provide structural support to cells and regulate the process of new tissue formation. The properties of the scaffold are essentials, and they can be controlled by varying the biomaterial formulation and the fabrication technology used to its production. Pectin is emerging as an alternative biomaterial to non-degradable and high-cost petroleum-based biopolymers commonly used in this field. It shows several promising properties including biocompatibility, biodegradability, non-toxicity and gelling capability. Pectin-based formulations can be processed through different fabrication approaches into bidimensional and three-dimensional scaffolds. This chapter aims at highlighting the potentiality in using pectin as biomaterial in the field of tissue engineering. The most representative applications of pectin in preparing scaffolds for wound healing and tissue regeneration are discussed.
{"title":"Pectin-Based Scaffolds for Tissue Engineering Applications","authors":"Anna Lapomarda, A. de Acutis, C. De Maria, G. Vozzi","doi":"10.5772/intechopen.101521","DOIUrl":"https://doi.org/10.5772/intechopen.101521","url":null,"abstract":"Tissue engineering (TE) is an interdisciplinary field that was introduced from the necessity of finding alternative approaches to transplantation for the treatment of damaged and diseased organs or tissues. Unlike the conventional procedures, TE aims at inducing the regeneration of injured tissues through the implantation of customized and functional engineered tissues, built on the so-called ‘scaffolds’. These provide structural support to cells and regulate the process of new tissue formation. The properties of the scaffold are essentials, and they can be controlled by varying the biomaterial formulation and the fabrication technology used to its production. Pectin is emerging as an alternative biomaterial to non-degradable and high-cost petroleum-based biopolymers commonly used in this field. It shows several promising properties including biocompatibility, biodegradability, non-toxicity and gelling capability. Pectin-based formulations can be processed through different fabrication approaches into bidimensional and three-dimensional scaffolds. This chapter aims at highlighting the potentiality in using pectin as biomaterial in the field of tissue engineering. The most representative applications of pectin in preparing scaffolds for wound healing and tissue regeneration are discussed.","PeriodicalId":371548,"journal":{"name":"Pectins [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130575935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-12DOI: 10.5772/intechopen.100153
Daniel David Durán-Aranguren, Caren Juliana Alméciga Ramírez, Laura Catalina Villabona Díaz, Manuela Ayalde Valderrama, Rocío Sierra
This chapter describes the pectin production process from citrus residues. It discusses the importance of essential oils removal before processing through steam distillation, hydrodistillation, or solvent extraction. Also, it presents different extraction methods (acid hydrolysis, microwave-assisted acid hydrolysis, and hydrodistillation) that have been employed and different solvents that can be used for its purification. Since all these processing parameters can affect the final pectin yield and quality, a discussion is made on which processing options and conditions could be used based on recently reported data. The best operational conditions based on the percentages of pectin recovery and their relationship with quality parameters, such as the galacturonic acid content and degree of esterification are presented. Finally, a discussion is made regarding the opportunities for its integration under the biorefinery concept that could help to enhance several economic and environmental aspects of the process.
{"title":"Production of Pectin from Citrus Residues: Process Alternatives and Insights on Its Integration under the Biorefinery Concept","authors":"Daniel David Durán-Aranguren, Caren Juliana Alméciga Ramírez, Laura Catalina Villabona Díaz, Manuela Ayalde Valderrama, Rocío Sierra","doi":"10.5772/intechopen.100153","DOIUrl":"https://doi.org/10.5772/intechopen.100153","url":null,"abstract":"This chapter describes the pectin production process from citrus residues. It discusses the importance of essential oils removal before processing through steam distillation, hydrodistillation, or solvent extraction. Also, it presents different extraction methods (acid hydrolysis, microwave-assisted acid hydrolysis, and hydrodistillation) that have been employed and different solvents that can be used for its purification. Since all these processing parameters can affect the final pectin yield and quality, a discussion is made on which processing options and conditions could be used based on recently reported data. The best operational conditions based on the percentages of pectin recovery and their relationship with quality parameters, such as the galacturonic acid content and degree of esterification are presented. Finally, a discussion is made regarding the opportunities for its integration under the biorefinery concept that could help to enhance several economic and environmental aspects of the process.","PeriodicalId":371548,"journal":{"name":"Pectins [Working Title]","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116544975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-16DOI: 10.5772/intechopen.100152
O. Akin-Ajani, A. Okunlola
Pectin, a natural ionic polysaccharide found in the cell wall of terrestrial plants undergoes chain–chain association to form hydrogels upon addition of divalent cations. Based on its degree of esterification, pectin has been classified into two main types. The high methoxyl pectin with a degree of esterification greater than 50%, which is mainly used for its thickening and gelling properties and the low methoxyl pectin, which is widely used for its low sugar-content in jams, both applications being in the food industry. Pectin is mostly derived from citrus fruit peels, but can also be found in other plants such as waterleaf leaves, cocoa husk, and potato pulps. Pectin has been used as an excipient in pharmaceutical formulations for various functions. This chapter will focus on the various applications to which pectin has been used in the pharmaceutical industry.
{"title":"Pharmaceutical Applications of Pectin","authors":"O. Akin-Ajani, A. Okunlola","doi":"10.5772/intechopen.100152","DOIUrl":"https://doi.org/10.5772/intechopen.100152","url":null,"abstract":"Pectin, a natural ionic polysaccharide found in the cell wall of terrestrial plants undergoes chain–chain association to form hydrogels upon addition of divalent cations. Based on its degree of esterification, pectin has been classified into two main types. The high methoxyl pectin with a degree of esterification greater than 50%, which is mainly used for its thickening and gelling properties and the low methoxyl pectin, which is widely used for its low sugar-content in jams, both applications being in the food industry. Pectin is mostly derived from citrus fruit peels, but can also be found in other plants such as waterleaf leaves, cocoa husk, and potato pulps. Pectin has been used as an excipient in pharmaceutical formulations for various functions. This chapter will focus on the various applications to which pectin has been used in the pharmaceutical industry.","PeriodicalId":371548,"journal":{"name":"Pectins [Working Title]","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131937660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}