首页 > 最新文献

Ocean Sciences eJournal最新文献

英文 中文
Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language 基于R语言的马里亚纳海沟地貌统计分析
Pub Date : 2018-11-28 DOI: 10.20944/PREPRINTS201811.0610.V1
Polina Lemenkova
This paper introduces an application of R programming language for geostatistical data processing with a case study of the Mariana Trench, Pacific Ocean. The formation of the Mariana Trench, the deepest among all hadal oceanic depth trenches, is caused by complex and diverse geomorphic factors affecting its development. Mariana Trench crosses four tectonic plates: Mariana, Caroline, Pacific and Philippine. The impact of the geographic location and geological factors on its geomorphology has been studied by methods of statistical analysis and data visualization using R libraries. The methodology includes following steps. Firstly, vector thematic data were processed in QGIS: tectonics, bathymetry, geomorphology and geology. Secondly, 25 cross-section profiles were drawn across the trench. The length of each profile is 1000-km. The attribute information has been derived from each profile and stored in a table containing coordinates, depths and thematic information. Finally, this table was processed by methods of the statistical analysis on R. The programming codes and graphical results are presented. The results include geospatial comparative analysis and estimated effects of the data distribution by tectonic plates: slope angle, igneous volcanic areas and depths. The innovativeness of this paper consists in a cross-disciplinary approach combining GIS, statistical analysis and R programming.
本文以太平洋马里亚纳海沟为例,介绍了R语言在地质统计数据处理中的应用。马里亚纳海沟是所有深海沟中最深的海沟,其形成是由复杂多样的地貌因素影响其发育形成的。马里亚纳海沟横跨四个构造板块:马里亚纳、卡罗琳、太平洋和菲律宾。采用统计分析和R库数据可视化的方法,研究了地理位置和地质因素对其地貌的影响。该方法包括以下步骤。首先,在QGIS中对构造、测深、地貌、地质等矢量专题数据进行处理。其次,绘制了25条横断面剖面。每条剖面的长度为1000公里。属性信息是从每个概要文件中派生出来的,并存储在包含坐标、深度和主题信息的表中。最后,用r的统计分析方法对该表进行了处理,给出了程序代码和图形结果。结果包括地理空间对比分析,以及根据构造板块、斜坡角、火成岩区域和深度对数据分布的影响估计。本文的创新之处在于将GIS、统计分析和R编程相结合的跨学科方法。
{"title":"Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language","authors":"Polina Lemenkova","doi":"10.20944/PREPRINTS201811.0610.V1","DOIUrl":"https://doi.org/10.20944/PREPRINTS201811.0610.V1","url":null,"abstract":"This paper introduces an application of R programming language for geostatistical data processing with a case study of the Mariana Trench, Pacific Ocean. The formation of the Mariana Trench, the deepest among all hadal oceanic depth trenches, is caused by complex and diverse geomorphic factors affecting its development. Mariana Trench crosses four tectonic plates: Mariana, Caroline, Pacific and Philippine. The impact of the geographic location and geological factors on its geomorphology has been studied by methods of statistical analysis and data visualization using R libraries. The methodology includes following steps. Firstly, vector thematic data were processed in QGIS: tectonics, bathymetry, geomorphology and geology. Secondly, 25 cross-section profiles were drawn across the trench. The length of each profile is 1000-km. The attribute information has been derived from each profile and stored in a table containing coordinates, depths and thematic information. Finally, this table was processed by methods of the statistical analysis on R. The programming codes and graphical results are presented. The results include geospatial comparative analysis and estimated effects of the data distribution by tectonic plates: slope angle, igneous volcanic areas and depths. The innovativeness of this paper consists in a cross-disciplinary approach combining GIS, statistical analysis and R programming.","PeriodicalId":376118,"journal":{"name":"Ocean Sciences eJournal","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123249713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 80
期刊
Ocean Sciences eJournal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1