Pub Date : 2020-02-05DOI: 10.5772/intechopen.90690
S. Ouadfeul, Leila Aliouane
Oil and gas are the most useful fossil energy; they are presenting more than 80% of the world energy production (see Figure 1), with the increasing demand of these energy in the last decades due to rapid development of the world industries. Exploration, production, transport, refining, and commercialization of oil and gas require new methods and procedures to satisfy the needs of the different industrial sectors and world population in terms of fuel energy. A study by Hull [2] (a Halliburton Consulting) shows that the production of oil and gas in the world is under the economic limit since 2010, and it continues to decrease until 2030; the peak of production was in 1968 (see Figure 2). Another aspect showed in this report that when talking about mature fields is the concept of economic limit. The fact that we only recover on average 35% of the oil in place globally is not a function of technology or know-how, but rather it is dictated by what is economic to extract. The challenge for oil companies and researchers, therefore, is finding and applying technology and know-how that allows us to extract the resources at a cost that achieves the economic threshold [2]. For example, in the oil and gas domain, we can distinguish two kinds of oil and gas types which are conventional and unconventional; they have the same chemical characteristics and components; the only difference between them is in their way of extraction, since the conventional oil and gas are small quantities easy to develop with low cost; however the unconventional hydrocarbons are huge quantities requiring
{"title":"Introductory Chapter: Oil and Gas Wells - Advances and New Challenges","authors":"S. Ouadfeul, Leila Aliouane","doi":"10.5772/intechopen.90690","DOIUrl":"https://doi.org/10.5772/intechopen.90690","url":null,"abstract":"Oil and gas are the most useful fossil energy; they are presenting more than 80% of the world energy production (see Figure 1), with the increasing demand of these energy in the last decades due to rapid development of the world industries. Exploration, production, transport, refining, and commercialization of oil and gas require new methods and procedures to satisfy the needs of the different industrial sectors and world population in terms of fuel energy. A study by Hull [2] (a Halliburton Consulting) shows that the production of oil and gas in the world is under the economic limit since 2010, and it continues to decrease until 2030; the peak of production was in 1968 (see Figure 2). Another aspect showed in this report that when talking about mature fields is the concept of economic limit. The fact that we only recover on average 35% of the oil in place globally is not a function of technology or know-how, but rather it is dictated by what is economic to extract. The challenge for oil companies and researchers, therefore, is finding and applying technology and know-how that allows us to extract the resources at a cost that achieves the economic threshold [2]. For example, in the oil and gas domain, we can distinguish two kinds of oil and gas types which are conventional and unconventional; they have the same chemical characteristics and components; the only difference between them is in their way of extraction, since the conventional oil and gas are small quantities easy to develop with low cost; however the unconventional hydrocarbons are huge quantities requiring","PeriodicalId":397062,"journal":{"name":"Oil and Gas Wells","volume":"33 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120874886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-05DOI: 10.5772/intechopen.87945
M. Karimi, M. R. Adelzadeh, M. M. Tehrani, M. Mohammadipour, R. Mohammadian, Abbas Helalizade
Water block or invasion of water into the pores of reservoir forms during the operations of water-based drilling, injection, many perforations, completion fluids, and some other particular processes in the reservoir (such as fingering and con-ning). Subsequently, the alteration in the shape or composition of the fine particles such as clay (water-wet solids), as a result of the stress on it, in the flow path of the second phase can lead to the permeability decline of reservoir. Consequently, the solvents such as surfactants (as demulsifiers) to lower the surface tension as a phenomenon associated with intermolecular forces (known as capillary action) during flowback are consumed to avoid the emulsions and sludge mostly in the near-wellbore zone or undertreatment and under-injection radius of the reservoir. However, in addition to surging or swabbing the wells to lower the surface tension, using solvents as the wettability changing agent along with base fluid is a common method in the water block elimination from the wellbore, especially in the low permeability porous media or the reservoirs latter its average pressure declined below bubble point. For more profitability, after using solvents in various reservoir characterizations, the trend of their behavior variations in the different lithologies is required to decide on the removed damage percentage. The investigations on this subject involve many experimental studies and have not been presented any mathematical formulas for the damage of water block in the water, oil, and gas reservoirs. These formulas determine selection criteria for the applied materials and increase variable performance. An integrated set of procedures and guidelines for one or more phases in a porous media is necessary to carry out the step-by-step approach at wellhead. Erroneous decisions and difficult situations can also be addressed in the injection wells or saltwater disposal wells, in which water block is a formation damage type. Misconceptions and difficult situations resulting from these injuries can increase water saturation in borehole and a definite layer or a definite sectional area around the wellbore, the overburden pressure of a point in a layer in the first four equations is expressed. In the second, the estimated overburden pressure equations are applied in driving the equations of removed water block (B k ). The equations of removed water block, themselves, are divided into two groups of equations, i.e., equations of oil wells and equations of saltwater disposal wells, and each group of equations is again classified based on the wettability of reservoir rock (oil-wet or water-wet) in the two ranges of porosity. In the third, after describing these equations (i.e., equations of B k ), the other new variable included in the equations of removed water block, that is, the acid expanding ability (I k ) for a definite oil layer around the wellbore, is presented, which is extracted from (1) the full characteristic
{"title":"Damage Formation: Equations of water block in oil and water wells","authors":"M. Karimi, M. R. Adelzadeh, M. M. Tehrani, M. Mohammadipour, R. Mohammadian, Abbas Helalizade","doi":"10.5772/intechopen.87945","DOIUrl":"https://doi.org/10.5772/intechopen.87945","url":null,"abstract":"Water block or invasion of water into the pores of reservoir forms during the operations of water-based drilling, injection, many perforations, completion fluids, and some other particular processes in the reservoir (such as fingering and con-ning). Subsequently, the alteration in the shape or composition of the fine particles such as clay (water-wet solids), as a result of the stress on it, in the flow path of the second phase can lead to the permeability decline of reservoir. Consequently, the solvents such as surfactants (as demulsifiers) to lower the surface tension as a phenomenon associated with intermolecular forces (known as capillary action) during flowback are consumed to avoid the emulsions and sludge mostly in the near-wellbore zone or undertreatment and under-injection radius of the reservoir. However, in addition to surging or swabbing the wells to lower the surface tension, using solvents as the wettability changing agent along with base fluid is a common method in the water block elimination from the wellbore, especially in the low permeability porous media or the reservoirs latter its average pressure declined below bubble point. For more profitability, after using solvents in various reservoir characterizations, the trend of their behavior variations in the different lithologies is required to decide on the removed damage percentage. The investigations on this subject involve many experimental studies and have not been presented any mathematical formulas for the damage of water block in the water, oil, and gas reservoirs. These formulas determine selection criteria for the applied materials and increase variable performance. An integrated set of procedures and guidelines for one or more phases in a porous media is necessary to carry out the step-by-step approach at wellhead. Erroneous decisions and difficult situations can also be addressed in the injection wells or saltwater disposal wells, in which water block is a formation damage type. Misconceptions and difficult situations resulting from these injuries can increase water saturation in borehole and a definite layer or a definite sectional area around the wellbore, the overburden pressure of a point in a layer in the first four equations is expressed. In the second, the estimated overburden pressure equations are applied in driving the equations of removed water block (B k ). The equations of removed water block, themselves, are divided into two groups of equations, i.e., equations of oil wells and equations of saltwater disposal wells, and each group of equations is again classified based on the wettability of reservoir rock (oil-wet or water-wet) in the two ranges of porosity. In the third, after describing these equations (i.e., equations of B k ), the other new variable included in the equations of removed water block, that is, the acid expanding ability (I k ) for a definite oil layer around the wellbore, is presented, which is extracted from (1) the full characteristic","PeriodicalId":397062,"journal":{"name":"Oil and Gas Wells","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114626179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-19DOI: 10.5772/intechopen.88612
E. Imarhiagbe, N. Obayagbona
Oil-laden drill cutting wastes have remained a serious environmental menace to well engineers and oil prospecting companies, due to unacceptability of oil-based muds to the environment as proscribed by the environmental guidelines. The problem of oil-containing drill cuttings can be better appreciated when viewed along the line that in Nigeria, about 3,900 billion barrel of drill cuttings are produced in a typical four thousand and fifty-four meter on shore drilling operation. Guidelines and standards of the regulatory authority in Nigeria, the Department of Petroleum Resources, forbid the discharge of drill cuttings into the environment without first ascertaining the nil or minimum impacts via carrying out Environmental Impact Assessment and Environment Evaluation Report studies. Biodegradation is the natural process whereby micro-organisms use up such substances as energy source, which are broken down into constituents such as fatty acids, carbon dioxide, and water. The biodegradation of oil pollutants is not a new concept; however, it is new as an increasingly effective and potentially inexpensive clean-up technology. Its potential contribution as countermeasure biotechnology for decontamination of oil-polluted ecosystems is enormous. Oil exploration industries should adopt biodegradation treatment procedures of their generated wastes before discharge into receiving environment.
{"title":"Environmental Evaluation and Biodegradability of Drilling Waste: A Case Study of Drill Cuttings from Ologbo Oilfield Wells at Edo State, Nigeria","authors":"E. Imarhiagbe, N. Obayagbona","doi":"10.5772/intechopen.88612","DOIUrl":"https://doi.org/10.5772/intechopen.88612","url":null,"abstract":"Oil-laden drill cutting wastes have remained a serious environmental menace to well engineers and oil prospecting companies, due to unacceptability of oil-based muds to the environment as proscribed by the environmental guidelines. The problem of oil-containing drill cuttings can be better appreciated when viewed along the line that in Nigeria, about 3,900 billion barrel of drill cuttings are produced in a typical four thousand and fifty-four meter on shore drilling operation. Guidelines and standards of the regulatory authority in Nigeria, the Department of Petroleum Resources, forbid the discharge of drill cuttings into the environment without first ascertaining the nil or minimum impacts via carrying out Environmental Impact Assessment and Environment Evaluation Report studies. Biodegradation is the natural process whereby micro-organisms use up such substances as energy source, which are broken down into constituents such as fatty acids, carbon dioxide, and water. The biodegradation of oil pollutants is not a new concept; however, it is new as an increasingly effective and potentially inexpensive clean-up technology. Its potential contribution as countermeasure biotechnology for decontamination of oil-polluted ecosystems is enormous. Oil exploration industries should adopt biodegradation treatment procedures of their generated wastes before discharge into receiving environment.","PeriodicalId":397062,"journal":{"name":"Oil and Gas Wells","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124682281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-12DOI: 10.5772/INTECHOPEN.85610
E. M. Mansour, M. E. Aily, S. Desouky
This chapter discusses the fundamentals of the phase behavior of hydrocarbon fluids. Real reservoir fluids contain many more than two, three, or four components; therefore, phase-composition data can no longer be represented with two, three or four coordinates. Instead, phase diagrams that give more limited information are used. The behavior of reservoir of a reservoir fluid during producing is determined by the shape of its phase diagram and the position of its critical point. Many of producing characteristic of each type of fluid will be discussed. Ensuing chapters will address the physical properties of these three natural gas reservoir fluids, with emphasis on retrograde gas condensate gas, dry gas, and wet gas.
{"title":"Gases Reservoirs Fluid Phase Behavior","authors":"E. M. Mansour, M. E. Aily, S. Desouky","doi":"10.5772/INTECHOPEN.85610","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85610","url":null,"abstract":"This chapter discusses the fundamentals of the phase behavior of hydrocarbon fluids. Real reservoir fluids contain many more than two, three, or four components; therefore, phase-composition data can no longer be represented with two, three or four coordinates. Instead, phase diagrams that give more limited information are used. The behavior of reservoir of a reservoir fluid during producing is determined by the shape of its phase diagram and the position of its critical point. Many of producing characteristic of each type of fluid will be discussed. Ensuing chapters will address the physical properties of these three natural gas reservoir fluids, with emphasis on retrograde gas condensate gas, dry gas, and wet gas.","PeriodicalId":397062,"journal":{"name":"Oil and Gas Wells","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130327249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-24DOI: 10.5772/INTECHOPEN.85619
A. Fadairo, G. Adeyemi, T. Ogunkunle, Ayotomiwa Evbogame, A. Adesina
Field development and economic evaluation of hydrocarbon demand for an accurate model for predicting horizontal well performance as horizontal and multilateral wells have become far more prominent in the industry than vertical wells. Several approaches for modelling horizontal well performance have been studied and reported in the literature. Analytical approach is the easiest with large inaccuracy in the prediction of the horizontal well performance because of inability to apply it in reservoir-wellbore coupling equation. Numerical approach is more reliable for field application than analytical approach. However, it involves iterative nature that requires longer computational times. Semi-analytical approach is simpler and sufficiently exact for field applications if the governing fundamental flow equation is accurately modelled. This study presents a new semi-analytical model for predicting horizontal and multilateral well performance, which includes friction, acceleration and accumulation induced pressure drop along horizontal well length into the governing fundamental flow equations. The outcomes of the proposed model have been validated by field data gotten from gauge rate of 5660stb/d at steady-state condition. The estimated steady flow rate of 5593.9 stb/day obtained from the new approach shows an error of 1.2% which is seen to be more accurate than steady flow rate values obtained by four previous models that exhibited higher percentage errors when compared to gauge reading.
{"title":"An Improved Semi-Analytical Approach for Predicting Horizontal and Multilateral Well Performance","authors":"A. Fadairo, G. Adeyemi, T. Ogunkunle, Ayotomiwa Evbogame, A. Adesina","doi":"10.5772/INTECHOPEN.85619","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85619","url":null,"abstract":"Field development and economic evaluation of hydrocarbon demand for an accurate model for predicting horizontal well performance as horizontal and multilateral wells have become far more prominent in the industry than vertical wells. Several approaches for modelling horizontal well performance have been studied and reported in the literature. Analytical approach is the easiest with large inaccuracy in the prediction of the horizontal well performance because of inability to apply it in reservoir-wellbore coupling equation. Numerical approach is more reliable for field application than analytical approach. However, it involves iterative nature that requires longer computational times. Semi-analytical approach is simpler and sufficiently exact for field applications if the governing fundamental flow equation is accurately modelled. This study presents a new semi-analytical model for predicting horizontal and multilateral well performance, which includes friction, acceleration and accumulation induced pressure drop along horizontal well length into the governing fundamental flow equations. The outcomes of the proposed model have been validated by field data gotten from gauge rate of 5660stb/d at steady-state condition. The estimated steady flow rate of 5593.9 stb/day obtained from the new approach shows an error of 1.2% which is seen to be more accurate than steady flow rate values obtained by four previous models that exhibited higher percentage errors when compared to gauge reading.","PeriodicalId":397062,"journal":{"name":"Oil and Gas Wells","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115706578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-19DOI: 10.5772/INTECHOPEN.86205
S. Brenner
Environmental risks posed by oil spills in semi-enclosed basins are more pronounced than those in the open ocean due to potential deposition along long segments of the coastlines. As a semi-enclosed sea, the Mediterranean is highly vulnerable to pollution events. Recent discoveries of major oil and natural gas reserves in the eastern Levantine basin have led to accelerated drilling, with several countries at various stages of exploration and production and others having mapped blocks for licensing, thereby significantly increasing the risks of a potential spill. Due to drilling by multiple, adjacent countries, any spills from deep water wells will be prone to cross border transport due to the highly variable winds and ocean currents. This risk is assessed through a series of simulations with an oil spill model forced with high resolution ocean currents and winds. The scenarios considered are well blowouts of several weeks duration, located within the drilling zones of each of various countries. Models such as this provide the basis for further environmental assessment and risk analysis. They also emphasize the importance of multinational cooperation to respond to and mitigate the environmental impacts which would result from a potential oil spill from any of the countries involved.
{"title":"The Risk of Potential Cross Border Transport of Oil Spills in the Semi-Enclosed Eastern Mediterranean Sea","authors":"S. Brenner","doi":"10.5772/INTECHOPEN.86205","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86205","url":null,"abstract":"Environmental risks posed by oil spills in semi-enclosed basins are more pronounced than those in the open ocean due to potential deposition along long segments of the coastlines. As a semi-enclosed sea, the Mediterranean is highly vulnerable to pollution events. Recent discoveries of major oil and natural gas reserves in the eastern Levantine basin have led to accelerated drilling, with several countries at various stages of exploration and production and others having mapped blocks for licensing, thereby significantly increasing the risks of a potential spill. Due to drilling by multiple, adjacent countries, any spills from deep water wells will be prone to cross border transport due to the highly variable winds and ocean currents. This risk is assessed through a series of simulations with an oil spill model forced with high resolution ocean currents and winds. The scenarios considered are well blowouts of several weeks duration, located within the drilling zones of each of various countries. Models such as this provide the basis for further environmental assessment and risk analysis. They also emphasize the importance of multinational cooperation to respond to and mitigate the environmental impacts which would result from a potential oil spill from any of the countries involved.","PeriodicalId":397062,"journal":{"name":"Oil and Gas Wells","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123630581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-24DOI: 10.5772/INTECHOPEN.82490
Roberta Tomi Mori, E. Leite
We have calculated and interpreted a 3D porosity model of a reservoir through the integration of 3D seismic data with geophysical well logs using an artificial neural network (ANN). The reservoir is composed of Albian carbonates. In the first main stage of the study, horizons were traced by following continuous seismic events on seismic sections, along depths between top and base of the reservoir. In the second main stage, predictions of reservoir porosity values were obtained, as well as a 3D model, through the designed ANN. The estimated porosity values range from 5 to 30%. The correlation coefficient and the error of the estimated values with respect to the actual values extracted along the wells are equal to 0.90 and 2.86%, respectively. Porosity values increase from southwest to the northeast portion, and lower values are found at depths related to the traced horizons. Although isolated peaks of maximum porosity are observed, spatial patterns depicted in the model are associated with geological features such as different porosity types and cementation degree.
{"title":"Porosity Prediction of a Carbonate Reservoir in Campos Basin Based on the Integration of Seismic Attributes and Well Log Data","authors":"Roberta Tomi Mori, E. Leite","doi":"10.5772/INTECHOPEN.82490","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82490","url":null,"abstract":"We have calculated and interpreted a 3D porosity model of a reservoir through the integration of 3D seismic data with geophysical well logs using an artificial neural network (ANN). The reservoir is composed of Albian carbonates. In the first main stage of the study, horizons were traced by following continuous seismic events on seismic sections, along depths between top and base of the reservoir. In the second main stage, predictions of reservoir porosity values were obtained, as well as a 3D model, through the designed ANN. The estimated porosity values range from 5 to 30%. The correlation coefficient and the error of the estimated values with respect to the actual values extracted along the wells are equal to 0.90 and 2.86%, respectively. Porosity values increase from southwest to the northeast portion, and lower values are found at depths related to the traced horizons. Although isolated peaks of maximum porosity are observed, spatial patterns depicted in the model are associated with geological features such as different porosity types and cementation degree.","PeriodicalId":397062,"journal":{"name":"Oil and Gas Wells","volume":"284 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124535409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}