首页 > 最新文献

Foundations and Trends in Networking最新文献

英文 中文
Opportunistic Routing in Wireless Networks 无线网络中的机会路由
Pub Date : 1900-01-01 DOI: 10.1561/1300000059
J. Liebeherr
The network calculus is a framework for the analysis of communication networks, which exploits that many computer network models become tractable for analysis if they are expressed in a min-plus or max-plus algebra. In a min-plus algebra, the network calculus characterizes amounts of traffic and available service as functions of time. In a max-plus algebra, the network calculus works with functions that express the arrival and departure times or the required service time for a given amount of traffic. While the min-plus network calculus is more convenient for capacity provisioning in a network, the max-plus network calculus is more compatible with traffic control algorithms that involve the computation of timestamps. Many similarities and relationships between the two versions of the network calculus are known, yet they are largely viewed as distinct analytical approaches with different capabilities and limitations. We show that there exists a one-to-one correspondence between the min-plus and max-plus network calculus, as long as traffic and service are described by functions with real-valued domains and ranges. Consequently, results from one version of the network calculus can be readily applied for computations in the other version. The ability to switch between min-plus and max-plus analysis without any loss of accuracy provides additional flexibility for characterizing and analyzing traffic control algorithms. This flexibility is exploited for gaining new insights into link scheduling algorithms that offer rate and delay guarantees to traffic flows. J. Liebeherr. Duality of the Max-Plus and Min-Plus Network Calculus. Foundations and Trends R © in Networking, vol. 11, no. 3-4, pp. 139–282, 2016. DOI: 10.1561/1300000059.
{"title":"Opportunistic Routing in Wireless Networks","authors":"J. Liebeherr","doi":"10.1561/1300000059","DOIUrl":"https://doi.org/10.1561/1300000059","url":null,"abstract":"The network calculus is a framework for the analysis of communication networks, which exploits that many computer network models become tractable for analysis if they are expressed in a min-plus or max-plus algebra. In a min-plus algebra, the network calculus characterizes amounts of traffic and available service as functions of time. In a max-plus algebra, the network calculus works with functions that express the arrival and departure times or the required service time for a given amount of traffic. While the min-plus network calculus is more convenient for capacity provisioning in a network, the max-plus network calculus is more compatible with traffic control algorithms that involve the computation of timestamps. Many similarities and relationships between the two versions of the network calculus are known, yet they are largely viewed as distinct analytical approaches with different capabilities and limitations. We show that there exists a one-to-one correspondence between the min-plus and max-plus network calculus, as long as traffic and service are described by functions with real-valued domains and ranges. Consequently, results from one version of the network calculus can be readily applied for computations in the other version. The ability to switch between min-plus and max-plus analysis without any loss of accuracy provides additional flexibility for characterizing and analyzing traffic control algorithms. This flexibility is exploited for gaining new insights into link scheduling algorithms that offer rate and delay guarantees to traffic flows. J. Liebeherr. Duality of the Max-Plus and Min-Plus Network Calculus. Foundations and Trends R © in Networking, vol. 11, no. 3-4, pp. 139–282, 2016. DOI: 10.1561/1300000059.","PeriodicalId":410943,"journal":{"name":"Foundations and Trends in Networking","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129116526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
期刊
Foundations and Trends in Networking
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1