Pub Date : 2018-06-20DOI: 10.5772/INTECHOPEN.76530
Cristina Conceição, P. Martins, N. Alvarenga, João Dias, Elsa Lamy, L. Garrido, Sandra Gomes, Sofia M. A. Freitas, Ana Belo, T. Brás, A. Paulino, M. Duarte
Cynara cardunculus L. is the most widespread species of Cynara genus (f. Asteraceae ). This herbaceous perennial plant is native to the Mediterranean region and invasive in other parts of the world, growing naturally in harsh habitat conditions. There are three subspecies: globe artichoke; cultivated cardoon and the progenitor of the two, the wild cardoon. The culture of Cynara cardunculus L. follows an annual growth cycle, emerging in autumn and harvesting in summer. Cynara cardunculus has been considered as a multi-purpose crop due to its relevant biochemical profiles. Inflorescences have been used as food, whereas leaves are a rich source of bioactive compounds. Consequently, larger plants without spines have been selected for technological purposes. Due to its high cellulose and hemicellulose content, the lignocellulosic fraction has been used as solid biofuel, biogas and bioethanol. Both pulp fibers production and seeds oil are suitable for biodiesel production. Over the centuries, the inflorescence pistils of Cynara cardunculus L. have been widely used for cheesemaking. The present chapter gives an overview of the Cynara cardunculus L. emphasizing recent knowledge regarding the use, conservation, preparation and application of Cynara cardunculus in ovine milk cheesemaking, as well as other biotechnological applications.
{"title":"Cynara cardunculus: Use in Cheesemaking and Pharmaceutical Applications","authors":"Cristina Conceição, P. Martins, N. Alvarenga, João Dias, Elsa Lamy, L. Garrido, Sandra Gomes, Sofia M. A. Freitas, Ana Belo, T. Brás, A. Paulino, M. Duarte","doi":"10.5772/INTECHOPEN.76530","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76530","url":null,"abstract":"Cynara cardunculus L. is the most widespread species of Cynara genus (f. Asteraceae ). This herbaceous perennial plant is native to the Mediterranean region and invasive in other parts of the world, growing naturally in harsh habitat conditions. There are three subspecies: globe artichoke; cultivated cardoon and the progenitor of the two, the wild cardoon. The culture of Cynara cardunculus L. follows an annual growth cycle, emerging in autumn and harvesting in summer. Cynara cardunculus has been considered as a multi-purpose crop due to its relevant biochemical profiles. Inflorescences have been used as food, whereas leaves are a rich source of bioactive compounds. Consequently, larger plants without spines have been selected for technological purposes. Due to its high cellulose and hemicellulose content, the lignocellulosic fraction has been used as solid biofuel, biogas and bioethanol. Both pulp fibers production and seeds oil are suitable for biodiesel production. Over the centuries, the inflorescence pistils of Cynara cardunculus L. have been widely used for cheesemaking. The present chapter gives an overview of the Cynara cardunculus L. emphasizing recent knowledge regarding the use, conservation, preparation and application of Cynara cardunculus in ovine milk cheesemaking, as well as other biotechnological applications.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127765459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-20DOI: 10.5772/INTECHOPEN.76312
V. Nagaraj, Neelam Upadhyay, B. S. Nath, A. Singh
Lactose is a principal component of the milk obtained from the mammals. Milk also con- tains several other sugars such as monosaccharides and oligosaccharides in low concentrations. Lactose has reactive functional groups and can be converted to valuable food-grade derivatives for commercial applications through chemical and/or enzymatic reactions. Physical and chemical properties of carbohydrates determine the methods that can be used for their fractionation and purification. In this chapter, the advanced extraction tech niques for fractionation and analytical methodologies applied for the determination of different carbohydrates of milk (lactose, lactulose, and oligosaccharides) are summarized. The main aim of this contribution is to provide the reader with a broad view on the recent fractionation and analytical techniques employed for the analysis of carbohydrates in dairy foods and their applications in food and pharmaceutical industry. different milk and milk products. A problem with studying car bohydrate bioactivities is the limited access to well-defined oligosaccharides. Purification of oligosaccharides from natural sources is laborious, and it is difficult to obtain preparation free of contaminants. In addition, the nonlinear nature of oligosaccharides creates a high structural diversity and their overall complexity makes it difficult for a single analytical method to charac terize them. Numerous health benefits of milk oligosaccharides and lactose derivatives are well established, including the pharmaceutical and food applications.
{"title":"Advances in Fractionation and Analysis of Milk Carbohydrates","authors":"V. Nagaraj, Neelam Upadhyay, B. S. Nath, A. Singh","doi":"10.5772/INTECHOPEN.76312","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76312","url":null,"abstract":"Lactose is a principal component of the milk obtained from the mammals. Milk also con- tains several other sugars such as monosaccharides and oligosaccharides in low concentrations. Lactose has reactive functional groups and can be converted to valuable food-grade derivatives for commercial applications through chemical and/or enzymatic reactions. Physical and chemical properties of carbohydrates determine the methods that can be used for their fractionation and purification. In this chapter, the advanced extraction tech niques for fractionation and analytical methodologies applied for the determination of different carbohydrates of milk (lactose, lactulose, and oligosaccharides) are summarized. The main aim of this contribution is to provide the reader with a broad view on the recent fractionation and analytical techniques employed for the analysis of carbohydrates in dairy foods and their applications in food and pharmaceutical industry. different milk and milk products. A problem with studying car bohydrate bioactivities is the limited access to well-defined oligosaccharides. Purification of oligosaccharides from natural sources is laborious, and it is difficult to obtain preparation free of contaminants. In addition, the nonlinear nature of oligosaccharides creates a high structural diversity and their overall complexity makes it difficult for a single analytical method to charac terize them. Numerous health benefits of milk oligosaccharides and lactose derivatives are well established, including the pharmaceutical and food applications.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125542751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-20DOI: 10.5772/INTECHOPEN.73309
Lucía Reguillo Granados, F. Pérez, A. Valero
Agri-food industriesmust guarantee the safety of the produced foods through the application of the existing regulations, by correctly implementing quality control systems. In relation to the quality of drinking milk, it is extremely important to monitor the industrial treatments to which it is subjected to avoid the multiplication of spoilage and pathogenic microorganisms. Raw milk must undergo strict quality controls at the primary production level based on the knowledge of themain factors that influence their quality andmicrobiological safety: hygienic practices, health status of cows, frequency andmoment of collection, storage temperature and time of transportation. To improve food safety and estimate food shelf life, predictive microbiology is a widely used tool for the estimation of microbial behavior as a function of intrinsic and extrinsic by using mathematical models. Throughout this chapter, a description of the current food quality management systems (FQMS) carried out by dairy industries will be provided by reflecting the current challenges, the guidelines, and available tools. A case study based on the application of predictive microbiology considering the importance of controlling certain factors in the primary production dairy chain will be developed.
{"title":"Food Quality Management Systems in the Dairy Industry: A Case Study on the Application of Predictive Microbiology in the Microbial Quality of Milk","authors":"Lucía Reguillo Granados, F. Pérez, A. Valero","doi":"10.5772/INTECHOPEN.73309","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.73309","url":null,"abstract":"Agri-food industriesmust guarantee the safety of the produced foods through the application of the existing regulations, by correctly implementing quality control systems. In relation to the quality of drinking milk, it is extremely important to monitor the industrial treatments to which it is subjected to avoid the multiplication of spoilage and pathogenic microorganisms. Raw milk must undergo strict quality controls at the primary production level based on the knowledge of themain factors that influence their quality andmicrobiological safety: hygienic practices, health status of cows, frequency andmoment of collection, storage temperature and time of transportation. To improve food safety and estimate food shelf life, predictive microbiology is a widely used tool for the estimation of microbial behavior as a function of intrinsic and extrinsic by using mathematical models. Throughout this chapter, a description of the current food quality management systems (FQMS) carried out by dairy industries will be provided by reflecting the current challenges, the guidelines, and available tools. A case study based on the application of predictive microbiology considering the importance of controlling certain factors in the primary production dairy chain will be developed.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122412756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-20DOI: 10.5772/INTECHOPEN.74291
N. Koca, Müge Urgu, Turkuaz Ecem Saatli
The main objective of this chapter is to discuss the potential of ultraviolet (UV) light applications in dairy industry. The principles, inactivation mechanisms, sources and devices of UV light are reviewed as well as its advantages and disadvantages. The factors affecting the efficacy of UV light are also discussed. The potential and present applications of UV light on disinfection of air, water, food contact surfaces and packaging materials are introduced. The efficacy and quality effects of UV light treatment for liquid dairy products are presented. In addition, as a promising application to prevent post-contamination after heat treatment, surface processing by UV light is emphasized. Besides its use for microbial inactivation by UV light, its possible uses such as creating novel dairy products are also introduced. The legal aspects on UV light for production, processing and handling of food briefly are given. Benefits, limitations and challenges of UV light for the future adaption in dairy industry are discussed. film and the thickness of packaging important parameters for eliminating or controlling growth of foodborne pathogens on the applied UV-C light for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films. The that adjusted 0.07 mm thick PPor PEfilmpackaging in conjunction with UV-C radiationcan be effectively used for controlling foodborne pathogens including E. coli O157:H7, S. Typhimurium , and L. monocytogenes
{"title":"Ultraviolet Light Applications in Dairy Processing","authors":"N. Koca, Müge Urgu, Turkuaz Ecem Saatli","doi":"10.5772/INTECHOPEN.74291","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74291","url":null,"abstract":"The main objective of this chapter is to discuss the potential of ultraviolet (UV) light applications in dairy industry. The principles, inactivation mechanisms, sources and devices of UV light are reviewed as well as its advantages and disadvantages. The factors affecting the efficacy of UV light are also discussed. The potential and present applications of UV light on disinfection of air, water, food contact surfaces and packaging materials are introduced. The efficacy and quality effects of UV light treatment for liquid dairy products are presented. In addition, as a promising application to prevent post-contamination after heat treatment, surface processing by UV light is emphasized. Besides its use for microbial inactivation by UV light, its possible uses such as creating novel dairy products are also introduced. The legal aspects on UV light for production, processing and handling of food briefly are given. Benefits, limitations and challenges of UV light for the future adaption in dairy industry are discussed. film and the thickness of packaging important parameters for eliminating or controlling growth of foodborne pathogens on the applied UV-C light for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films. The that adjusted 0.07 mm thick PPor PEfilmpackaging in conjunction with UV-C radiationcan be effectively used for controlling foodborne pathogens including E. coli O157:H7, S. Typhimurium , and L. monocytogenes","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130231909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-20DOI: 10.5772/INTECHOPEN.76464
D. F. Galvão
The dairy industry uses substantial amount of water to achieve the production process, especially for the maintenance of hygiene and cleanliness conditions. With this, is generating considerable volume of wastewater requiring treatment to meet the discharge standards before discarded? With the shortage of water resources and charging for water use, minimizing water consumption in industries is of paramount importance to main- tain its market competitiveness. In this sense, there has been increasing interest in the reuse of wastewater, in order to decrease the good water consumption by processes that do not require such high quality feature. Membrane separation processes are highlighted in generating good-quality reuse water that can meet the demand of various industrial processes. Thus, the present study aimed to evaluate the membrane separation processes for the treatment of dairy industry effluent to reuse.
{"title":"Membrane Technology and Water Reuse in a Dairy Industry","authors":"D. F. Galvão","doi":"10.5772/INTECHOPEN.76464","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76464","url":null,"abstract":"The dairy industry uses substantial amount of water to achieve the production process, especially for the maintenance of hygiene and cleanliness conditions. With this, is generating considerable volume of wastewater requiring treatment to meet the discharge standards before discarded? With the shortage of water resources and charging for water use, minimizing water consumption in industries is of paramount importance to main- tain its market competitiveness. In this sense, there has been increasing interest in the reuse of wastewater, in order to decrease the good water consumption by processes that do not require such high quality feature. Membrane separation processes are highlighted in generating good-quality reuse water that can meet the demand of various industrial processes. Thus, the present study aimed to evaluate the membrane separation processes for the treatment of dairy industry effluent to reuse.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116987802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-20DOI: 10.5772/INTECHOPEN.77110
T. Yonar, Özge Sivrioğlu, N. Özengin
Dairy industries have grown in most countries because of the demand in milk and milk products. This rise has led to the growth of dairy industries. The wastewaters discharged from this industry contain high concentrations of nutrients, chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS) and organic and inorganic contents, which can cause serious environmental problems if not properly treated. The conventional biological treatment methods are suitable for dairy wastewaters due to its high biodegradability. However, long chain fatty acids formed during the hydrolysis of lipids show the inhibitory action during anaerobic treatment. Sequencing batch reactor (SBR) and up flow anaerobic sludge blanket (UASB) systems seem to be the most promising technology for the biological treatment of dairy wastewaters. Several research papers have been published on the application of aerobic and anaerobic treatment technologies for dairy industry wastewater, but both treatment methods still have some disadvantages. The most important challenge is to find cost- efficient and environmentally sustainable approaches to enable water reuse and waste management. Therefore, alternative treatment technologies against biological treat- ment methods such as coagulation, adsorption, membrane and electrolysis processes are under investigation. This chapter provides a critical review focusing on physico- chemical treatment technologies of dairy wastewater.
{"title":"Physico-Chemical Treatment of Dairy Industry Wastewaters: A Review","authors":"T. Yonar, Özge Sivrioğlu, N. Özengin","doi":"10.5772/INTECHOPEN.77110","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.77110","url":null,"abstract":"Dairy industries have grown in most countries because of the demand in milk and milk products. This rise has led to the growth of dairy industries. The wastewaters discharged from this industry contain high concentrations of nutrients, chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS) and organic and inorganic contents, which can cause serious environmental problems if not properly treated. The conventional biological treatment methods are suitable for dairy wastewaters due to its high biodegradability. However, long chain fatty acids formed during the hydrolysis of lipids show the inhibitory action during anaerobic treatment. Sequencing batch reactor (SBR) and up flow anaerobic sludge blanket (UASB) systems seem to be the most promising technology for the biological treatment of dairy wastewaters. Several research papers have been published on the application of aerobic and anaerobic treatment technologies for dairy industry wastewater, but both treatment methods still have some disadvantages. The most important challenge is to find cost- efficient and environmentally sustainable approaches to enable water reuse and waste management. Therefore, alternative treatment technologies against biological treat- ment methods such as coagulation, adsorption, membrane and electrolysis processes are under investigation. This chapter provides a critical review focusing on physico- chemical treatment technologies of dairy wastewater.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"6 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114261245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dairy industry is considered as an important food industry that provides various kinds of nutritionally rich dairy products for all age groups. Beside these nutritive values, dairy industry is contemplated as a good source of raw materials for other industries. Most importantly, dairy industry employs environment-friendly and energy-saving technologies. Membrane separation technology being one of those also focused on a cost-effective and environment-friendly manner, which can be widely applied in dairy industry for many useful purposes. In this chapter, we first define and classify the membrane separation technology and then comprehensively describe its applications, for instance, component separation, filtration, removal of bacteria, and wastewater treatment in dairy industry.
{"title":"The Application of Membrane Separation Technology in the Dairy Industry","authors":"Qiming Chen, Liming Zhao, L. Yao, Qianqian Chen, WaheedAhmad, Yun Li, Zhen Qin","doi":"10.5772/INTECHOPEN.76320","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.76320","url":null,"abstract":"Dairy industry is considered as an important food industry that provides various kinds of nutritionally rich dairy products for all age groups. Beside these nutritive values, dairy industry is contemplated as a good source of raw materials for other industries. Most importantly, dairy industry employs environment-friendly and energy-saving technologies. Membrane separation technology being one of those also focused on a cost-effective and environment-friendly manner, which can be widely applied in dairy industry for many useful purposes. In this chapter, we first define and classify the membrane separation technology and then comprehensively describe its applications, for instance, component separation, filtration, removal of bacteria, and wastewater treatment in dairy industry.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131320070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-04DOI: 10.5772/INTECHOPEN.74448
F. Patrignani, L. Siroli, D. Serrazanetti, R. Lanciotti
Functional foods are one of the fastest increasing fields in the global food industry since they are positively perceived by the consumers as dietary strategies to reduce the inci dence of illness in the humankind. Actually, the use of biotechnological strategies, based on the use of functional and specific strains and sustainable technologies, such as high-pressure homogenization, can be a great chance to create innovation in the dairy field. Critical discussion on the actual scenario is the main topic of this chapter.
{"title":"Potential of High Pressure Homogenization and Functional Strains for the Development of Novel Functional Dairy Foods","authors":"F. Patrignani, L. Siroli, D. Serrazanetti, R. Lanciotti","doi":"10.5772/INTECHOPEN.74448","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74448","url":null,"abstract":"Functional foods are one of the fastest increasing fields in the global food industry since they are positively perceived by the consumers as dietary strategies to reduce the inci dence of illness in the humankind. Actually, the use of biotechnological strategies, based on the use of functional and specific strains and sustainable technologies, such as high-pressure homogenization, can be a great chance to create innovation in the dairy field. Critical discussion on the actual scenario is the main topic of this chapter.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131943771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-09DOI: 10.5772/INTECHOPEN.74759
Yanira I. Sánchez‐García, S. K. Bhangu, M. Ashokkumar, N. Gutiérrez‐Méndez
Whey is a by-product obtained from the cheese-making industry. This by-product is the primary source of high-value products such as whey protein concentrates and lactose. The partial removal of water from the whey is the first step in the recovery of lactose. Then, lactose in the concentrated whey is forced to crystallize through a cooling stage. This conventional process of crystallization is very slow up to 72 h accompanied by the generation of a mixture of lactose types (α, β, and amorphous) and low yield of lactose. These issues have been addressed through the seeding of lactose, the antisolvent crystallization, and more recently, by the crystallization of lactose assisted with low-frequency power ultrasound. Sonocrystallization is known to have a number of specific features that include the enhancement of the primary and secondary nucleation, as well as the development of smaller crystals with more uniform sizes and higher purity. Nowadays, there are a number of studies that provide relevant information on the effects of ultrasound on lactose crystallization, although some of these effects are still not fully understood. This book chapter discusses the current knowledge on lactose sonocrystallization and describes the basic principles of lactose crystallization and sonocrystallization.
{"title":"Sonocrystallization of Lactose from Whey","authors":"Yanira I. Sánchez‐García, S. K. Bhangu, M. Ashokkumar, N. Gutiérrez‐Méndez","doi":"10.5772/INTECHOPEN.74759","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74759","url":null,"abstract":"Whey is a by-product obtained from the cheese-making industry. This by-product is the primary source of high-value products such as whey protein concentrates and lactose. The partial removal of water from the whey is the first step in the recovery of lactose. Then, lactose in the concentrated whey is forced to crystallize through a cooling stage. This conventional process of crystallization is very slow up to 72 h accompanied by the generation of a mixture of lactose types (α, β, and amorphous) and low yield of lactose. These issues have been addressed through the seeding of lactose, the antisolvent crystallization, and more recently, by the crystallization of lactose assisted with low-frequency power ultrasound. Sonocrystallization is known to have a number of specific features that include the enhancement of the primary and secondary nucleation, as well as the development of smaller crystals with more uniform sizes and higher purity. Nowadays, there are a number of studies that provide relevant information on the effects of ultrasound on lactose crystallization, although some of these effects are still not fully understood. This book chapter discusses the current knowledge on lactose sonocrystallization and describes the basic principles of lactose crystallization and sonocrystallization.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128189822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-23DOI: 10.5772/INTECHOPEN.72927
Katrin A Kopf-Bolanz
Milk is known for its high nutrient content that helps to maintain important body functions. In this regard, bioactive peptides that are encrypted in milk proteins and get released during processing and/or digestion might play a role. These peptides are able to inhibit enzymes, influence cell growth, or target specific receptors. The peptide profile that arises after pro tein digestion in the jejunum before the absorption into the blood takes place includes these bioactive peptides. The composition of the peptide profile is influenced strongly via processing and a modification in processing might target specific functionalities. Thermal, chemical, biochemical, and physical treatments affect protein digestion mainly by changing the protein structure for example via denaturation or protease actions. Parameters influ - encing this are external ones, like the matrix of the product, and internal ones, like specific enzyme deficiencies. However, considering all the important aspects that are involved, there might be the possibility in the future to adjust a bioactive function via processing. anti-oxidative, anti-thrombotic, anticancer, immune-modulatory, antimicrobial, cholesterol-lowering, antidiabetic, mineral-binding, opioid and satiety properties were identified. These peptides occur directly in the dairy products after processing and are resistant to digestion enzymes or they are encrypted in dairy proteins and get released during digestion.
{"title":"Adjusting Bioactive Functions of Dairy Products via Processing","authors":"Katrin A Kopf-Bolanz","doi":"10.5772/INTECHOPEN.72927","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.72927","url":null,"abstract":"Milk is known for its high nutrient content that helps to maintain important body functions. In this regard, bioactive peptides that are encrypted in milk proteins and get released during processing and/or digestion might play a role. These peptides are able to inhibit enzymes, influence cell growth, or target specific receptors. The peptide profile that arises after pro tein digestion in the jejunum before the absorption into the blood takes place includes these bioactive peptides. The composition of the peptide profile is influenced strongly via processing and a modification in processing might target specific functionalities. Thermal, chemical, biochemical, and physical treatments affect protein digestion mainly by changing the protein structure for example via denaturation or protease actions. Parameters influ - encing this are external ones, like the matrix of the product, and internal ones, like specific enzyme deficiencies. However, considering all the important aspects that are involved, there might be the possibility in the future to adjust a bioactive function via processing. anti-oxidative, anti-thrombotic, anticancer, immune-modulatory, antimicrobial, cholesterol-lowering, antidiabetic, mineral-binding, opioid and satiety properties were identified. These peptides occur directly in the dairy products after processing and are resistant to digestion enzymes or they are encrypted in dairy proteins and get released during digestion.","PeriodicalId":415500,"journal":{"name":"Technological Approaches for Novel Applications in Dairy Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126468331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}