首页 > 最新文献

ESPT '15最新文献

英文 中文
Preventing the explosion of exascale profile data with smart thread-level aggregation 通过智能线程级聚合防止百亿亿级配置文件数据的爆炸
Pub Date : 2015-11-15 DOI: 10.1145/2832106.2832107
Daniel Lorenz, Sergei Shudler, F. Wolf
State of the art performance analysis tools, such as Score-P, record performance profiles on a per-thread basis. However, for exascale systems the number of threads is expected to be in the order of a billion threads, and this would result in extremely large performance profiles. In most cases the user almost never inspects the individual per-thread data. In this paper, we propose to aggregate per-thread performance data in each process to reduce its amount to a reasonable size. Our goal is to aggregate the threads such that the thread-level performance issues are still visible and analyzable. Therefore, we implemented four aggregation strategies in Score-P: (i) SUM -- aggregates all threads of a process into a process profile; (ii) SET -- calculates statistical key data as well as the sum; (iii) KEY -- identifies three threads (i.e., key threads) of particular interest for performance analysis and aggregates the rest of the threads; (iv) CALLTREE -- clusters threads that have the same call-tree structure. For each one of these strategies we evaluate the compression ratio and how they maintain thread-level performance behavior information. The aggregation does not incur any additional performance overhead at application run-time.
最先进的性能分析工具,如Score-P,以每个线程为基础记录性能配置文件。然而,对于百亿亿级系统,线程的数量预计将达到10亿个线程,这将导致非常大的性能配置文件。在大多数情况下,用户几乎从不检查每个线程的数据。在本文中,我们建议聚合每个进程中的每线程性能数据,以将其数量减少到合理的大小。我们的目标是聚合线程,这样线程级别的性能问题仍然是可见和可分析的。因此,我们在Score-P中实现了四种聚合策略:(i) SUM——将一个流程的所有线程聚合到一个流程配置文件中;(ii) SET——计算统计关键数据和总和;(iii) KEY——识别性能分析特别感兴趣的三个线程(即关键线程),并汇总其余线程;(iv) CALLTREE——具有相同调用树结构的线程集群。对于这些策略中的每一种,我们都会评估压缩比以及它们如何维护线程级性能行为信息。聚合不会在应用程序运行时产生任何额外的性能开销。
{"title":"Preventing the explosion of exascale profile data with smart thread-level aggregation","authors":"Daniel Lorenz, Sergei Shudler, F. Wolf","doi":"10.1145/2832106.2832107","DOIUrl":"https://doi.org/10.1145/2832106.2832107","url":null,"abstract":"State of the art performance analysis tools, such as Score-P, record performance profiles on a per-thread basis. However, for exascale systems the number of threads is expected to be in the order of a billion threads, and this would result in extremely large performance profiles. In most cases the user almost never inspects the individual per-thread data. In this paper, we propose to aggregate per-thread performance data in each process to reduce its amount to a reasonable size. Our goal is to aggregate the threads such that the thread-level performance issues are still visible and analyzable. Therefore, we implemented four aggregation strategies in Score-P: (i) SUM -- aggregates all threads of a process into a process profile; (ii) SET -- calculates statistical key data as well as the sum; (iii) KEY -- identifies three threads (i.e., key threads) of particular interest for performance analysis and aggregates the rest of the threads; (iv) CALLTREE -- clusters threads that have the same call-tree structure. For each one of these strategies we evaluate the compression ratio and how they maintain thread-level performance behavior information. The aggregation does not incur any additional performance overhead at application run-time.","PeriodicalId":424753,"journal":{"name":"ESPT '15","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115631776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
HPC I/O trace extrapolation HPC I/O跟踪外推
Pub Date : 2015-11-15 DOI: 10.1145/2832106.2832108
Xiaoqing Luo, F. Mueller, P. Carns, John Jenkins, R. Latham, R. Ross, S. Snyder
Today's rapid development of supercomputers has caused I/O performance to become a major performance bottleneck for many scientific applications. Trace analysis tools have thus become vital for diagnosing root causes of I/O problems. This work contributes an I/O tracing framework with elastic traces. After gathering a set of smaller traces, we extrapolate the application trace to a large numbers of nodes. The traces can in principle be extrapolated even beyond the scale of present-day systems. Experiments with I/O benchmarks on up to 320 processors indicate that extrapolated I/O trace replays closely resemble the I/O behavior of equivalent applications.
当今超级计算机的快速发展使得I/O性能成为许多科学应用的主要性能瓶颈。因此,跟踪分析工具对于诊断I/O问题的根本原因变得至关重要。这项工作提供了一个具有弹性跟踪的I/O跟踪框架。在收集了一组较小的跟踪之后,我们将应用程序跟踪推断到大量节点。这些痕迹原则上可以被外推,甚至超越当今系统的规模。在多达320个处理器上进行I/O基准测试的实验表明,推断出的I/O跟踪重播与等效应用程序的I/O行为非常相似。
{"title":"HPC I/O trace extrapolation","authors":"Xiaoqing Luo, F. Mueller, P. Carns, John Jenkins, R. Latham, R. Ross, S. Snyder","doi":"10.1145/2832106.2832108","DOIUrl":"https://doi.org/10.1145/2832106.2832108","url":null,"abstract":"Today's rapid development of supercomputers has caused I/O performance to become a major performance bottleneck for many scientific applications. Trace analysis tools have thus become vital for diagnosing root causes of I/O problems.\u0000 This work contributes an I/O tracing framework with elastic traces. After gathering a set of smaller traces, we extrapolate the application trace to a large numbers of nodes. The traces can in principle be extrapolated even beyond the scale of present-day systems. Experiments with I/O benchmarks on up to 320 processors indicate that extrapolated I/O trace replays closely resemble the I/O behavior of equivalent applications.","PeriodicalId":424753,"journal":{"name":"ESPT '15","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123037548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
ESPT '15
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1