Pub Date : 2020-08-09DOI: 10.20944/preprints202008.0224.v1
P. Robakowski, T. Wyka, W. Kowalkowski, W. Barzdajn, E. Pers-kamczyc, Artur Jankowski, B. Politycka
Recent climatic changes have resulted in an increased frequency and prolonged periods of drought and strained water resources affecting plant production. We explored the possibility of reducing irrigation in a container nursery and studied the growth responses of seedlings of four economically important forest trees: broadleaf deciduous angiosperms Fagus sylvatica L., Quercus petraea (Matt.) Liebl., and evergreen conifers Abies alba Mill. and Pinus sylvestris L. We also studied markers of water stress including modifications of biomass allocation, leaf anatomy, proline accumulation, and expression of selected genes. Growth of the broadleaved deciduous species was more sensitive to the reduced water supply than that of conifers. Remarkably, growth of the shade tolerant Abies was not affected. Adjustment of biomass allocations was strongest in P. sylvestris, with a remarkable increase in allocation to roots. In response to water deficit both deciduous species accumulated proline in leaves and produced leaves with shorter palisade cells, reduced vascular tissues, and smaller conduit diameters. These responses did not occur in conifers. Relative transcript abundance of a gene encoding the Zn-finger protein in Q. petraea and a gene encoding the pore calcium channel protein 1 in A. alba increased as water deficit increased. Our study shows major differences between functional groups in response to irrigation, with seedlings of evergreen conifers having higher tolerance than the deciduous species. This suggests that major water savings could be achieved by adjusting irrigation regime to functional group or species requirements.
{"title":"Practical Implications of Different Phenotypic and Molecular Responses of Evergreen Conifer and Broadleaf Deciduous Forest Tree Species to Regulated Water Deficit in a Container Nursery","authors":"P. Robakowski, T. Wyka, W. Kowalkowski, W. Barzdajn, E. Pers-kamczyc, Artur Jankowski, B. Politycka","doi":"10.20944/preprints202008.0224.v1","DOIUrl":"https://doi.org/10.20944/preprints202008.0224.v1","url":null,"abstract":"Recent climatic changes have resulted in an increased frequency and prolonged periods of drought and strained water resources affecting plant production. We explored the possibility of reducing irrigation in a container nursery and studied the growth responses of seedlings of four economically important forest trees: broadleaf deciduous angiosperms Fagus sylvatica L., Quercus petraea (Matt.) Liebl., and evergreen conifers Abies alba Mill. and Pinus sylvestris L. We also studied markers of water stress including modifications of biomass allocation, leaf anatomy, proline accumulation, and expression of selected genes. Growth of the broadleaved deciduous species was more sensitive to the reduced water supply than that of conifers. Remarkably, growth of the shade tolerant Abies was not affected. Adjustment of biomass allocations was strongest in P. sylvestris, with a remarkable increase in allocation to roots. In response to water deficit both deciduous species accumulated proline in leaves and produced leaves with shorter palisade cells, reduced vascular tissues, and smaller conduit diameters. These responses did not occur in conifers. Relative transcript abundance of a gene encoding the Zn-finger protein in Q. petraea and a gene encoding the pore calcium channel protein 1 in A. alba increased as water deficit increased. Our study shows major differences between functional groups in response to irrigation, with seedlings of evergreen conifers having higher tolerance than the deciduous species. This suggests that major water savings could be achieved by adjusting irrigation regime to functional group or species requirements.","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125747402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research Highlights: This study offers new information on the cross cutting of decayed stems with the sounding of short (0.5 m) offcuts and the bucking of longer (3.0 m) butt-rotten poles. Background and Objectives: The root and butt-rot fungus Heterobasidion annosum sensu lato (Fr.) Bref. causes wood quality damage to trees in softwood forests. When timber is harvested in butt-rotten forests, it is essential that the decayed part of the tree is recognized and cut away from a stem, while the healthy and good quality log section of a stem is cross cut with precision sawlogs. The objective of the study was to investigate the impact of two off-cutting methods on stem processing time, cutting productivity, sawlog volume, and commercial value at the roadside landing when harvesting timber from the butt-rotten Norway spruce (Picea abies (L.) Karst.) final-felling forests. Materials and Methods: The length of the short offcuts used was 0.5 m. The results of the cross-cutting practices were compared to the decayed pulpwood poles of 3 m from the butt of the rotten stems. Time and motion studies were carried out in stands before the profitability calculations. The study data consisted of 1980 Norway spruce sawlog stems. Results: Sounding of the short offcuts added significantly to the stem processing time of butt-rotten stems, but the sawlog volume and the timber value recovery of the stems were higher than those of the decayed pulpwood poles of 3 m. Conclusions: The study concluded that sounding of butt-rotten Norway spruce stems with one to three offcuts is economically profitable if the diameter of the decayed column at the stem stump’s height is small (≤5 cm). In contrast, when the width of the decay is larger (>5 cm), it is more profitable to first cross cut the decayed pulpwood pole of 3 m and then to observe the height of the decayed part of the stem.
{"title":"The Profitability of Cross-Cutting Practices in Butt-Rotten Picea abies Final-Felling Stands","authors":"K. Kärhä, M. Räsänen, T. Palander","doi":"10.3390/f10100874","DOIUrl":"https://doi.org/10.3390/f10100874","url":null,"abstract":"Research Highlights: This study offers new information on the cross cutting of decayed stems with the sounding of short (0.5 m) offcuts and the bucking of longer (3.0 m) butt-rotten poles. Background and Objectives: The root and butt-rot fungus Heterobasidion annosum sensu lato (Fr.) Bref. causes wood quality damage to trees in softwood forests. When timber is harvested in butt-rotten forests, it is essential that the decayed part of the tree is recognized and cut away from a stem, while the healthy and good quality log section of a stem is cross cut with precision sawlogs. The objective of the study was to investigate the impact of two off-cutting methods on stem processing time, cutting productivity, sawlog volume, and commercial value at the roadside landing when harvesting timber from the butt-rotten Norway spruce (Picea abies (L.) Karst.) final-felling forests. Materials and Methods: The length of the short offcuts used was 0.5 m. The results of the cross-cutting practices were compared to the decayed pulpwood poles of 3 m from the butt of the rotten stems. Time and motion studies were carried out in stands before the profitability calculations. The study data consisted of 1980 Norway spruce sawlog stems. Results: Sounding of the short offcuts added significantly to the stem processing time of butt-rotten stems, but the sawlog volume and the timber value recovery of the stems were higher than those of the decayed pulpwood poles of 3 m. Conclusions: The study concluded that sounding of butt-rotten Norway spruce stems with one to three offcuts is economically profitable if the diameter of the decayed column at the stem stump’s height is small (≤5 cm). In contrast, when the width of the decay is larger (>5 cm), it is more profitable to first cross cut the decayed pulpwood pole of 3 m and then to observe the height of the decayed part of the stem.","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124187969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-08DOI: 10.3390/ENVIRONMENTS5120129
A. Betts, R. Desjardins
Analysis of the hourly Canadian Prairie data for the past 60 years has transformed our quantitative understanding of land–atmosphere–cloud coupling. The key reason is that trained observers made hourly estimates of the opaque cloud fraction that obscures the sun, moon, or stars, following the same protocol for 60 years at all stations. These 24 daily estimates of opaque cloud data are of sufficient quality such that they can be calibrated against Baseline Surface Radiation Network data to yield the climatology of the daily short-wave, long-wave, and total cloud forcing (SWCF, LWCF and CF, respectively). This key radiative forcing has not been available previously for climate datasets. Net cloud radiative forcing changes sign from negative in the warm season, to positive in the cold season, when reflective snow reduces the negative SWCF below the positive LWCF. This in turn leads to a large climate discontinuity with snow cover, with a systematic cooling of 10 °C or more with snow cover. In addition, snow cover transforms the coupling between cloud cover and the diurnal range of temperature. In the warm season, maximum temperature increases with decreasing cloud, while minimum temperature barely changes; while in the cold season with snow cover, maximum temperature decreases with decreasing cloud, and minimum temperature decreases even more. In the warm season, the diurnal ranges of temperature, relative humidity, equivalent potential temperature, and the pressure height of the lifting condensation level are all tightly coupled to the opaque cloud cover. Given over 600 station-years of hourly data, we are able to extract, perhaps for the first time, the coupling between the cloud forcing and the warm season imbalance of the diurnal cycle, which changes monotonically from a warming and drying under clear skies to a cooling and moistening under cloudy skies with precipitation. Because we have the daily cloud radiative forcing, which is large, we are able to show that the memory of water storage anomalies, from precipitation and the snowpack, goes back many months. The spring climatology shows the memory of snowfall back through the entire winter, and the memory in summer, goes back to the months of snowmelt. Lagged precipitation anomalies modify the thermodynamic coupling of the diurnal cycle to the cloud forcing, and shift the diurnal cycle of the mixing ratio, which has a double peak. The seasonal extraction of the surface total water storage is a large damping of the interannual variability of precipitation anomalies in the growing season. The large land-use change from summer fallow to intensive cropping, which peaked in the early 1990s, has led to a coupled climate response that has cooled and moistened the growing season, lowering cloud-base, increasing equivalent potential temperature, and increasing precipitation. We show a simplified energy balance of the Prairies during the growing season, and its dependence on reflective cloud.
{"title":"Understanding Land–Atmosphere–Climate Coupling from the Canadian Prairie Dataset","authors":"A. Betts, R. Desjardins","doi":"10.3390/ENVIRONMENTS5120129","DOIUrl":"https://doi.org/10.3390/ENVIRONMENTS5120129","url":null,"abstract":"Analysis of the hourly Canadian Prairie data for the past 60 years has transformed our quantitative understanding of land–atmosphere–cloud coupling. The key reason is that trained observers made hourly estimates of the opaque cloud fraction that obscures the sun, moon, or stars, following the same protocol for 60 years at all stations. These 24 daily estimates of opaque cloud data are of sufficient quality such that they can be calibrated against Baseline Surface Radiation Network data to yield the climatology of the daily short-wave, long-wave, and total cloud forcing (SWCF, LWCF and CF, respectively). This key radiative forcing has not been available previously for climate datasets. Net cloud radiative forcing changes sign from negative in the warm season, to positive in the cold season, when reflective snow reduces the negative SWCF below the positive LWCF. This in turn leads to a large climate discontinuity with snow cover, with a systematic cooling of 10 °C or more with snow cover. In addition, snow cover transforms the coupling between cloud cover and the diurnal range of temperature. In the warm season, maximum temperature increases with decreasing cloud, while minimum temperature barely changes; while in the cold season with snow cover, maximum temperature decreases with decreasing cloud, and minimum temperature decreases even more. In the warm season, the diurnal ranges of temperature, relative humidity, equivalent potential temperature, and the pressure height of the lifting condensation level are all tightly coupled to the opaque cloud cover. Given over 600 station-years of hourly data, we are able to extract, perhaps for the first time, the coupling between the cloud forcing and the warm season imbalance of the diurnal cycle, which changes monotonically from a warming and drying under clear skies to a cooling and moistening under cloudy skies with precipitation. Because we have the daily cloud radiative forcing, which is large, we are able to show that the memory of water storage anomalies, from precipitation and the snowpack, goes back many months. The spring climatology shows the memory of snowfall back through the entire winter, and the memory in summer, goes back to the months of snowmelt. Lagged precipitation anomalies modify the thermodynamic coupling of the diurnal cycle to the cloud forcing, and shift the diurnal cycle of the mixing ratio, which has a double peak. The seasonal extraction of the surface total water storage is a large damping of the interannual variability of precipitation anomalies in the growing season. The large land-use change from summer fallow to intensive cropping, which peaked in the early 1990s, has led to a coupled climate response that has cooled and moistened the growing season, lowering cloud-base, increasing equivalent potential temperature, and increasing precipitation. We show a simplified energy balance of the Prairies during the growing season, and its dependence on reflective cloud.","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132918699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The variability of temperature and precipitation influenced by El Niño-Southern Oscillation (ENSO) is potentially one of key factors contributing to vegetation product in southern Africa. Thus, understanding large-scale ocean–atmospheric phenomena like the ENSO and Indian Ocean Dipole/Dipole Mode Index (DMI) is important. In this study, 16 years (2002–2017) of Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua 16-day normalized difference vegetation index (NDVI), extracted and processed using JavaScript code editor in the Google Earth Engine (GEE) platform was used to analyze the vegetation response pattern of the oldest proclaimed nature reserve in Africa, the Hluhluwe-iMfolozi Park (HiP) to climatic variability. The MODIS enhanced vegetation index (EVI), burned area index (BAI), and normalized difference infrared index (NDII) were also analyzed. The study used the Modern Retrospective Analysis for the Research Application (MERRA) model monthly mean soil temperature and precipitations. The Global Land Data Assimilation System (GLDAS) evapotranspiration (ET) data were used to investigate the HiP vegetation water stress. The region in the southern part of the HiP which has land cover dominated by savanna experienced the most impact of the strong El Niño. Both the HiP NDVI inter-annual Mann–Kendal trend test and sequential Mann–Kendall (SQ-MK) test indicated a significant downward trend during the El Niño years of 2003 and 2014–2015. The SQ-MK significant trend turning point which was thought to be associated with the 2014–2015 El Niño periods begun in November 2012. The wavelet coherence and coherence phase indicated a positive teleconnection/correlation between soil temperatures, precipitation, soil moisture (NDII), and ET. This was explained by a dominant in-phase relationship between the NDVI and climatic parameters especially at a period band of 8–16 months.
{"title":"Time Series Analysis of MODIS Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought","authors":"N. Mbatha, Sifiso Xulu","doi":"10.3390/CLI6040095","DOIUrl":"https://doi.org/10.3390/CLI6040095","url":null,"abstract":"The variability of temperature and precipitation influenced by El Niño-Southern Oscillation (ENSO) is potentially one of key factors contributing to vegetation product in southern Africa. Thus, understanding large-scale ocean–atmospheric phenomena like the ENSO and Indian Ocean Dipole/Dipole Mode Index (DMI) is important. In this study, 16 years (2002–2017) of Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua 16-day normalized difference vegetation index (NDVI), extracted and processed using JavaScript code editor in the Google Earth Engine (GEE) platform was used to analyze the vegetation response pattern of the oldest proclaimed nature reserve in Africa, the Hluhluwe-iMfolozi Park (HiP) to climatic variability. The MODIS enhanced vegetation index (EVI), burned area index (BAI), and normalized difference infrared index (NDII) were also analyzed. The study used the Modern Retrospective Analysis for the Research Application (MERRA) model monthly mean soil temperature and precipitations. The Global Land Data Assimilation System (GLDAS) evapotranspiration (ET) data were used to investigate the HiP vegetation water stress. The region in the southern part of the HiP which has land cover dominated by savanna experienced the most impact of the strong El Niño. Both the HiP NDVI inter-annual Mann–Kendal trend test and sequential Mann–Kendall (SQ-MK) test indicated a significant downward trend during the El Niño years of 2003 and 2014–2015. The SQ-MK significant trend turning point which was thought to be associated with the 2014–2015 El Niño periods begun in November 2012. The wavelet coherence and coherence phase indicated a positive teleconnection/correlation between soil temperatures, precipitation, soil moisture (NDII), and ET. This was explained by a dominant in-phase relationship between the NDVI and climatic parameters especially at a period band of 8–16 months.","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129076418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-25DOI: 10.3389/fenvs.2018.00059
G. Milinevsky, V. Danylevsky
In this paper the current status of knowledge and research efforts on atmospheric aerosol investigation over Ukraine region are reviewed. Several earlier results of atmospheric extinction, aerosol content and properties studies performed in Ukraine during the second part of 20 century are discussed. The recent findings on aerosol optical depth, Angstrom exponent, optical and microphysical properties of aerosol particles (single-scattering albedo, size distribution, complex refractive index) and their seasonal variability obtained from both AERONET and portable sun-photometers measurements during the 2008–2016 period are presented and analyzed. Data of POLDER/PARASOL satellite instrument were also involved to study the aerosol properties over Ukraine and neighbor countries. The results showed that aerosol content and properties over Ukraine are very similar to ones over rest European urban regions but considerably lower than over polluted China territories. The first lidar measurements and the air quality evaluations by the PM concentration measurements in Ukraine are also discussed. The aerosol sources in Ukraine and surrounding territories are considered from analysis of the air mass back trajectory and simulation by GEOS-Chem model. The future satellite project Aerosol-UA for global aerosol studies by measurements of the scattered solar radiation polarization is discussed in the article.
{"title":"Atmospheric Aerosol Over Ukraine Region: Current Status of Knowledge and Research Efforts","authors":"G. Milinevsky, V. Danylevsky","doi":"10.3389/fenvs.2018.00059","DOIUrl":"https://doi.org/10.3389/fenvs.2018.00059","url":null,"abstract":"In this paper the current status of knowledge and research efforts on atmospheric aerosol investigation over Ukraine region are reviewed. Several earlier results of atmospheric extinction, aerosol content and properties studies performed in Ukraine during the second part of 20 century are discussed. The recent findings on aerosol optical depth, Angstrom exponent, optical and microphysical properties of aerosol particles (single-scattering albedo, size distribution, complex refractive index) and their seasonal variability obtained from both AERONET and portable sun-photometers measurements during the 2008–2016 period are presented and analyzed. Data of POLDER/PARASOL satellite instrument were also involved to study the aerosol properties over Ukraine and neighbor countries. The results showed that aerosol content and properties over Ukraine are very similar to ones over rest European urban regions but considerably lower than over polluted China territories. The first lidar measurements and the air quality evaluations by the PM concentration measurements in Ukraine are also discussed. The aerosol sources in Ukraine and surrounding territories are considered from analysis of the air mass back trajectory and simulation by GEOS-Chem model. The future satellite project Aerosol-UA for global aerosol studies by measurements of the scattered solar radiation polarization is discussed in the article.","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131661089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this review and synthesis is to illustrate the gradual transformation of needles and cones from litter to humus. Individual needles may follow quite different decomposition pathways, which contributes to a diverse humus structure. In the litter layer (Oi), about 40% of the needles were excavated by special mites that produced slowly decomposable excrements. In the fermentation layer (Oe), needles which happened to be in close contact with fine roots decomposed more rapidly. Cones decomposed slower than needles during the first 3–5 years, so the role of cones in carbon (C) storage may be greater than indicated by their fraction of fresh litter. Over a 13 years period, potassium (K), magnesium (Mg) and phosphorus (P) in cones was released, while the total amount of calcium (Ca), manganese (Mn), iron (Fe) and aluminium (Al) increased strongly. Nitrogen concentration increased but the total nitrogen content remained rather constant. After 13 years, the cones had sunk about 6 cm into the soil and lost 60% of their dry weight but were morphologically intact. A cone monitored for 28 years was fully recognizable and had not yet reached the stable Oa layer. The most inert decomposition products in the Oa layer were fragments of needles and cone scales, microarthropod excrements and chitinous insect remains.
{"title":"From Litter to Humus in a Norwegian Spruce Forest Long-Term Studies on the Decomposition of Needles and Cones","authors":"S. Hågvar","doi":"10.3390/F7090186","DOIUrl":"https://doi.org/10.3390/F7090186","url":null,"abstract":"The aim of this review and synthesis is to illustrate the gradual transformation of needles and cones from litter to humus. Individual needles may follow quite different decomposition pathways, which contributes to a diverse humus structure. In the litter layer (Oi), about 40% of the needles were excavated by special mites that produced slowly decomposable excrements. In the fermentation layer (Oe), needles which happened to be in close contact with fine roots decomposed more rapidly. Cones decomposed slower than needles during the first 3–5 years, so the role of cones in carbon (C) storage may be greater than indicated by their fraction of fresh litter. Over a 13 years period, potassium (K), magnesium (Mg) and phosphorus (P) in cones was released, while the total amount of calcium (Ca), manganese (Mn), iron (Fe) and aluminium (Al) increased strongly. Nitrogen concentration increased but the total nitrogen content remained rather constant. After 13 years, the cones had sunk about 6 cm into the soil and lost 60% of their dry weight but were morphologically intact. A cone monitored for 28 years was fully recognizable and had not yet reached the stable Oa layer. The most inert decomposition products in the Oa layer were fragments of needles and cone scales, microarthropod excrements and chitinous insect remains.","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132831725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During oil and natural gas production, so-called “produced water” comprises the largest byproduct stream. In addition, many oil and gas operations are augmented via injection of hydraulic fracturing (HF) fluids into the formation. Both produced water and HF fluids may contain hundreds of individual chemicals, some known to be detrimental to public health and the environment. Oil and gas production wastewater may serve a range of beneficial purposes, particularly in arid regions, if managed correctly. Numerous treatment technologies have been developed that allow for injection, discharge to the land surface, or beneficial reuse. Although many papers have addressed the effects of oil and gas production wastewater (OGPW) on groundwater and surface water quality, significantly less information is available on the effects of these fluids on the soil resource. This review paper compiles fundamental information on numerous chemicals used and produced during oil and gas development and their effects on the soil environment. Additionally, pollution prevention technologies relating to OGPW are presented. An understanding of the effects of OGPW on soil chemical, physical, and biological properties can provide a foundation for effective remediation of OGPW-affected soils; additionally, sustainable reuse of oil and gas water for irrigation and industrial purposes may be enhanced.
{"title":"Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention","authors":"J. Pichtel","doi":"10.1155/2016/2707989","DOIUrl":"https://doi.org/10.1155/2016/2707989","url":null,"abstract":"During oil and natural gas production, so-called “produced water” comprises the largest byproduct stream. In addition, many oil and gas operations are augmented via injection of hydraulic fracturing (HF) fluids into the formation. Both produced water and HF fluids may contain hundreds of individual chemicals, some known to be detrimental to public health and the environment. Oil and gas production wastewater may serve a range of beneficial purposes, particularly in arid regions, if managed correctly. Numerous treatment technologies have been developed that allow for injection, discharge to the land surface, or beneficial reuse. Although many papers have addressed the effects of oil and gas production wastewater (OGPW) on groundwater and surface water quality, significantly less information is available on the effects of these fluids on the soil resource. This review paper compiles fundamental information on numerous chemicals used and produced during oil and gas development and their effects on the soil environment. Additionally, pollution prevention technologies relating to OGPW are presented. An understanding of the effects of OGPW on soil chemical, physical, and biological properties can provide a foundation for effective remediation of OGPW-affected soils; additionally, sustainable reuse of oil and gas water for irrigation and industrial purposes may be enhanced.","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122246128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.37247/paenvr.1.2020.8
Alan K. Betts, Darren Z Chan, Raymond L Desjardins
{"title":"Near-surface biases in ERA5 over the Canadian Prairies","authors":"Alan K. Betts, Darren Z Chan, Raymond L Desjardins","doi":"10.37247/paenvr.1.2020.8","DOIUrl":"https://doi.org/10.37247/paenvr.1.2020.8","url":null,"abstract":"","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"10 28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127036158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.37247/paenvr.1.2021.38
Joana Catarina Andrade, António Lopes João, Carlos de Sousa Alonso, A. Barreto, A. Henriques
Assessing In Vitro Biofilm-Forming Ability and Susceptibility to Food-Grade Sanitizers of Listeria Monocytogenes Isolates from a Delicatessen Food Abstract Listeria monocytogenes is a human pathogen commonly found in food-related environments. L. monocytogenes is believed to occur in food contact surfaces in biofilms, exhibiting less susceptibility to sanitizers than their planktonic form. Food-grade sanitizers are widely used in food processing plants for contamination control purposes. The aim of this work was to investigate the susceptibility of L. monocytogenes to commercial food-grade sanitizers and to benzalkonium chloride; isolates were tested in the planktonic form and in biofilms and were further assessed using genetic subtyping. Raw materials, final products and food-contact surfaces of a delicatessen food industry were tested during a 6-year period for L. monocytogenes. confirmation and serogrouping was performed by polymerase chain reaction (PCR), revealing serogoup IIc as the most common (53%). Genetic variability of the isolates was evidenced using Pulsed-field gel electrophoresis (PFGE) and three clusters were obtained. In the biofilm-forming ability assay, isolates were classified as weak biofilm producers. L. monocytogenes strains were susceptible both in the planktonic and biofilm form to oxidizing and ethanol-based compounds and to benzalkonium chloride, but not to quaternary ammonium compound. A positive association of the biofilm-forming ability and LD 90 values was found for quaternary ammonium compound and benzalkonium chloride. Overall, these results confirm the need for conscious selection and use of sanitizers in food-related environments for Listeria monocytogenes improved control .
{"title":"Assessing In Vitro Biofilm-Forming Ability and Susceptibility to Food-Grade Sanitizers of Listeria Monocytogenes Isolates from a Delicatessen Food Industry","authors":"Joana Catarina Andrade, António Lopes João, Carlos de Sousa Alonso, A. Barreto, A. Henriques","doi":"10.37247/paenvr.1.2021.38","DOIUrl":"https://doi.org/10.37247/paenvr.1.2021.38","url":null,"abstract":"Assessing In Vitro Biofilm-Forming Ability and Susceptibility to Food-Grade Sanitizers of Listeria Monocytogenes Isolates from a Delicatessen Food Abstract Listeria monocytogenes is a human pathogen commonly found in food-related environments. L. monocytogenes is believed to occur in food contact surfaces in biofilms, exhibiting less susceptibility to sanitizers than their planktonic form. Food-grade sanitizers are widely used in food processing plants for contamination control purposes. The aim of this work was to investigate the susceptibility of L. monocytogenes to commercial food-grade sanitizers and to benzalkonium chloride; isolates were tested in the planktonic form and in biofilms and were further assessed using genetic subtyping. Raw materials, final products and food-contact surfaces of a delicatessen food industry were tested during a 6-year period for L. monocytogenes. confirmation and serogrouping was performed by polymerase chain reaction (PCR), revealing serogoup IIc as the most common (53%). Genetic variability of the isolates was evidenced using Pulsed-field gel electrophoresis (PFGE) and three clusters were obtained. In the biofilm-forming ability assay, isolates were classified as weak biofilm producers. L. monocytogenes strains were susceptible both in the planktonic and biofilm form to oxidizing and ethanol-based compounds and to benzalkonium chloride, but not to quaternary ammonium compound. A positive association of the biofilm-forming ability and LD 90 values was found for quaternary ammonium compound and benzalkonium chloride. Overall, these results confirm the need for conscious selection and use of sanitizers in food-related environments for Listeria monocytogenes improved control .","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115576250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.37247/paenvr.1.2020.20
W. Orthuber
{"title":"Information is Selection-A Review of Basics Shows Substantial Potential for Improvement of Digital Information Representation","authors":"W. Orthuber","doi":"10.37247/paenvr.1.2020.20","DOIUrl":"https://doi.org/10.37247/paenvr.1.2020.20","url":null,"abstract":"","PeriodicalId":426802,"journal":{"name":"Prime Archives in Environmental Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130502274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}