首页 > 最新文献

Proceeding of the 6th international conference on Mobile systems, applications, and services - MobiSys '08最新文献

英文 中文
Cascadia 卡斯卡底古陆
Evan Welbourne, Nodira Khoussainova, J. Letchner, Yang Li, M. Balazinska, G. Borriello, Dan Suciu
Cascadia is a system that provides RFID-based pervasive computing applications with an infrastructure for specifying, extracting and managing meaningful high-level events from raw RFID data. Cascadia provides three important services. First, it allows application developers and even users to specify events using either a declarative query language or an intuitive visual language based on direct manipulation. Second, it provides an API that facilitates the development of applications which rely on RFID-based events. Third, it automatically detects the specified events, forwards them to registered applications and stores them for later use (e.g., for historical queries). We present the design and implementation of Cascadia along with an evaluation that includes both a user study and measurements on traces collected in a building-wide RFID deployment. To demonstrate how Cascadia facilitates application development, we built a simple digital diary application in the form of a calendar that populates itself with RFID-based events. Cascadia copes with ambiguous RFID data and limitations in an RFID deployment by transforming RFID readings into probabilistic events. We show that this approach outperforms deterministic event detection techniques while avoiding the need to specify and train sophisticated models.
{"title":"Cascadia","authors":"Evan Welbourne, Nodira Khoussainova, J. Letchner, Yang Li, M. Balazinska, G. Borriello, Dan Suciu","doi":"10.1145/1378600.1378631","DOIUrl":"https://doi.org/10.1145/1378600.1378631","url":null,"abstract":"Cascadia is a system that provides RFID-based pervasive computing applications with an infrastructure for specifying, extracting and managing meaningful high-level events from raw RFID data. Cascadia provides three important services. First, it allows application developers and even users to specify events using either a declarative query language or an intuitive visual language based on direct manipulation. Second, it provides an API that facilitates the development of applications which rely on RFID-based events. Third, it automatically detects the specified events, forwards them to registered applications and stores them for later use (e.g., for historical queries). We present the design and implementation of Cascadia along with an evaluation that includes both a user study and measurements on traces collected in a building-wide RFID deployment. To demonstrate how Cascadia facilitates application development, we built a simple digital diary application in the form of a calendar that populates itself with RFID-based events. Cascadia copes with ambiguous RFID data and limitations in an RFID deployment by transforming RFID readings into probabilistic events. We show that this approach outperforms deterministic event detection techniques while avoiding the need to specify and train sophisticated models.","PeriodicalId":435472,"journal":{"name":"Proceeding of the 6th international conference on Mobile systems, applications, and services - MobiSys '08","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122720060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Anonysense Anonysense
Cory Cornelius, Apu Kapadia, David Kotz, D. Peebles, Minho Shin, Nikos Triandopoulos
Personal mobile devices are increasingly equipped with the capability to sense the physical world (through cameras, microphones, and accelerometers, for example) and the, network world (with Wi-Fi and Bluetooth interfaces). Such devices offer many new opportunities for cooperative sensing applications. For example, users' mobile phones may contribute data to community-oriented information services, from city-wide pollution monitoring to enterprise-wide detection of unauthorized Wi-Fi access points. This people-centric mobile-sensing model introduces a new security challenge in the design of mobile systems: protecting the privacy of participants while allowing their devices to reliably contribute high-quality data to these large-scale applications. We describe AnonySense, a privacy-aware architecture for realizing pervasive applications based on collaborative, opportunistic sensing by personal mobile devices. AnonySense allows applications to submit sensing tasks that will be distributed across anonymous participating mobile devices, later receiving verified, yet anonymized, sensor data reports back from the field, thus providing the first secure implementation of this participatory sensing model. We describe our trust model, and the security properties that drove the design of the AnonySense system. We evaluate our prototype implementation through experiments that indicate the feasibility of this approach, and through two applications: a Wi-Fi rogue access point detector and a lost-object finder.
{"title":"Anonysense","authors":"Cory Cornelius, Apu Kapadia, David Kotz, D. Peebles, Minho Shin, Nikos Triandopoulos","doi":"10.1145/1378600.1378624","DOIUrl":"https://doi.org/10.1145/1378600.1378624","url":null,"abstract":"Personal mobile devices are increasingly equipped with the capability to sense the physical world (through cameras, microphones, and accelerometers, for example) and the, network world (with Wi-Fi and Bluetooth interfaces). Such devices offer many new opportunities for cooperative sensing applications. For example, users' mobile phones may contribute data to community-oriented information services, from city-wide pollution monitoring to enterprise-wide detection of unauthorized Wi-Fi access points. This people-centric mobile-sensing model introduces a new security challenge in the design of mobile systems: protecting the privacy of participants while allowing their devices to reliably contribute high-quality data to these large-scale applications.\u0000 We describe AnonySense, a privacy-aware architecture for realizing pervasive applications based on collaborative, opportunistic sensing by personal mobile devices. AnonySense allows applications to submit sensing tasks that will be distributed across anonymous participating mobile devices, later receiving verified, yet anonymized, sensor data reports back from the field, thus providing the first secure implementation of this participatory sensing model. We describe our trust model, and the security properties that drove the design of the AnonySense system. We evaluate our prototype implementation through experiments that indicate the feasibility of this approach, and through two applications: a Wi-Fi rogue access point detector and a lost-object finder.","PeriodicalId":435472,"journal":{"name":"Proceeding of the 6th international conference on Mobile systems, applications, and services - MobiSys '08","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115717368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 457
期刊
Proceeding of the 6th international conference on Mobile systems, applications, and services - MobiSys '08
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1