Pub Date : 2021-08-18DOI: 10.5772/intechopen.93782
A. Drissi
Quantum computers are distinguished by their enormous storage capacity and relatively high computing speed. Among the cryptosystems of the future, the best known and most studied which will resist when using this kind of computer are cryptosystems based on error-correcting codes. The use of problems inspired by the theory of error-correcting codes in the design of cryptographic systems adds an alternative to cryptosystems based on number theory, as well as solutions to their vulnerabilities. Their security is based on the problem of decoding a random code that is NP-complete. In this chapter, we will discuss the cryptographic properties of error-correcting codes, as well as the security of cryptosystems based on code theory.
{"title":"The Security of Cryptosystems Based on Error-Correcting Codes","authors":"A. Drissi","doi":"10.5772/intechopen.93782","DOIUrl":"https://doi.org/10.5772/intechopen.93782","url":null,"abstract":"Quantum computers are distinguished by their enormous storage capacity and relatively high computing speed. Among the cryptosystems of the future, the best known and most studied which will resist when using this kind of computer are cryptosystems based on error-correcting codes. The use of problems inspired by the theory of error-correcting codes in the design of cryptographic systems adds an alternative to cryptosystems based on number theory, as well as solutions to their vulnerabilities. Their security is based on the problem of decoding a random code that is NP-complete. In this chapter, we will discuss the cryptographic properties of error-correcting codes, as well as the security of cryptosystems based on code theory.","PeriodicalId":438596,"journal":{"name":"Cryptography - Recent Advances and Future Developments","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125789670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-18DOI: 10.5772/intechopen.95511
Amal Hafsa, M. Gafsi, J. Malek, Mohsen Machhout
Securing multimedia applications becomes a major challenge with the violation of the information increasing currently. In this paper, a novel method for color image encryption is proposed. The procedure of encryption is performed using cooperation between Elliptic Curve Cryptography (ECC) and the Advanced Encryption Standard (AES) with CTR (Counter) mode. In the cryptographic system, we have proposed to take advantage of the Elliptic Curve Random Generator to generate a sequence of arbitrary numbers based on the curve. The random generation step is founded on the public key sharing and a changing point G. Then, the AES-CTR is performed to these sequences using arbitrary keys for image encryption. The use of the AES alongside greatly distributed random results an interesting encryption method. Security analysis is successfully performed and our experiments prove that the suggested technique provides the basis of cryptography with more simplicity and correctness.
{"title":"Hybrid Encryption Model Based on Advanced Encryption Standard and Elliptic Curve Pseudo Random","authors":"Amal Hafsa, M. Gafsi, J. Malek, Mohsen Machhout","doi":"10.5772/intechopen.95511","DOIUrl":"https://doi.org/10.5772/intechopen.95511","url":null,"abstract":"Securing multimedia applications becomes a major challenge with the violation of the information increasing currently. In this paper, a novel method for color image encryption is proposed. The procedure of encryption is performed using cooperation between Elliptic Curve Cryptography (ECC) and the Advanced Encryption Standard (AES) with CTR (Counter) mode. In the cryptographic system, we have proposed to take advantage of the Elliptic Curve Random Generator to generate a sequence of arbitrary numbers based on the curve. The random generation step is founded on the public key sharing and a changing point G. Then, the AES-CTR is performed to these sequences using arbitrary keys for image encryption. The use of the AES alongside greatly distributed random results an interesting encryption method. Security analysis is successfully performed and our experiments prove that the suggested technique provides the basis of cryptography with more simplicity and correctness.","PeriodicalId":438596,"journal":{"name":"Cryptography - Recent Advances and Future Developments","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126875549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-05DOI: 10.5772/INTECHOPEN.95383
Bharadwaja V. Srividya, S. Sasi
The application of internet has spiked up in the present-day scenario, as the exchange of information made between two parties happens in public environment. Hence privacy of information plays an important role in our day to day life. There have been incredible developments made in the field of cryptography resulting in modern cryptography at its zenith. Quantum computers are one among them creating fear into security agencies across the world. Solving the complex mathematical calculations is uncomplicated using quantum computers which results in breaking the keys of modern cryptography, which cannot be broken using classical computers. The concept of quantum physics, into the cryptographic world has resulted in the advancement of quantum cryptography. This technique utilizes the idea of key generation by photons, and communicates between peer entities by secured channel. Quantum cryptography adapts quantum mechanical principles like Heisenberg Uncertainty principle and photon polarization principle to provide secure communication between two parties. This article focuses on generation of a secret shared key, later converted into Quantum bits (Qbits) and transmitted to the receiver securely.
{"title":"An Emphasis on Quantum Cryptography and Quantum Key Distribution","authors":"Bharadwaja V. Srividya, S. Sasi","doi":"10.5772/INTECHOPEN.95383","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.95383","url":null,"abstract":"The application of internet has spiked up in the present-day scenario, as the exchange of information made between two parties happens in public environment. Hence privacy of information plays an important role in our day to day life. There have been incredible developments made in the field of cryptography resulting in modern cryptography at its zenith. Quantum computers are one among them creating fear into security agencies across the world. Solving the complex mathematical calculations is uncomplicated using quantum computers which results in breaking the keys of modern cryptography, which cannot be broken using classical computers. The concept of quantum physics, into the cryptographic world has resulted in the advancement of quantum cryptography. This technique utilizes the idea of key generation by photons, and communicates between peer entities by secured channel. Quantum cryptography adapts quantum mechanical principles like Heisenberg Uncertainty principle and photon polarization principle to provide secure communication between two parties. This article focuses on generation of a secret shared key, later converted into Quantum bits (Qbits) and transmitted to the receiver securely.","PeriodicalId":438596,"journal":{"name":"Cryptography - Recent Advances and Future Developments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130948244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-30DOI: 10.5772/INTECHOPEN.94407
Adarsh Kumar, Deepak Kumar Sharma
Interconnection of devices through Radio Frequency IDentification (RFID) brings enormous applications that are increasing constantly day by day. Due to the rapid growth of such applications, security of RFID networks becomes crucial and is a major challenge. Classical or lightweight cryptography primitives and protocols are the solutions to enhance the security standards in such networks. Authentication protocols are one of the important security protocols required to be integrated before exchange of secured information. This work surveyed the recently developed authentication protocols. Further, classifications, security challenges, and attack analysis are explored. A comparative analysis of different types of authentication protocols explains their applications in resourceful and resource constraint Internet of Things (IoT). Authentication protocols are categorized into: symmetric, asymmetric, lightweight, ultra-lightweight and group protocols. Symmetric and asymmetric protocols are more suitable for resourceful devices whereas lightweight and ultra-lightweight protocols are designed for resource constraint devices. Security and cost analysis shows that asymmetric protocols provide higher security than any other protocol at a reasonable cost. However, lightweight authentication protocols are suitable for passive RFID devices but do not provide full security.
{"title":"Survey and Analysis of Lightweight Authentication Mechanisms","authors":"Adarsh Kumar, Deepak Kumar Sharma","doi":"10.5772/INTECHOPEN.94407","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.94407","url":null,"abstract":"Interconnection of devices through Radio Frequency IDentification (RFID) brings enormous applications that are increasing constantly day by day. Due to the rapid growth of such applications, security of RFID networks becomes crucial and is a major challenge. Classical or lightweight cryptography primitives and protocols are the solutions to enhance the security standards in such networks. Authentication protocols are one of the important security protocols required to be integrated before exchange of secured information. This work surveyed the recently developed authentication protocols. Further, classifications, security challenges, and attack analysis are explored. A comparative analysis of different types of authentication protocols explains their applications in resourceful and resource constraint Internet of Things (IoT). Authentication protocols are categorized into: symmetric, asymmetric, lightweight, ultra-lightweight and group protocols. Symmetric and asymmetric protocols are more suitable for resourceful devices whereas lightweight and ultra-lightweight protocols are designed for resource constraint devices. Security and cost analysis shows that asymmetric protocols provide higher security than any other protocol at a reasonable cost. However, lightweight authentication protocols are suitable for passive RFID devices but do not provide full security.","PeriodicalId":438596,"journal":{"name":"Cryptography - Recent Advances and Future Developments","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123685359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-15DOI: 10.5772/intechopen.94018
F. Ţiplea, C. Andriesei, Cristian Hristea
The last decade has shown an increasing interest in the use of the physically unclonable function (PUF) technology in the design of radio frequency identification (RFID) systems. PUFs can bring extra security and privacy at the physical level that cannot be obtained by symmetric or asymmetric cryptography at the moment. However, many PUF-based RFID schemes proposed in recent years do not even achieve the lowest privacy level in reputable security and privacy models, such as Vaudenay’s model. In contrast, the lowest privacy in this model can be achieved through standard RFID schemes that use only symmetric cryptography. The purpose of this chapter is to analyze this aspect. Thus, it is emphasized the need to use formal models in the study of the security and privacy of (PUF-based) RFID schemes. We broadly discuss the tag corruption oracle and highlight some aspects that can lead to schemes without security or privacy. We also insist on the need to formally treat the cryptographic properties of PUFs to obtain security and privacy proofs. In the end, we point out a significant benefit of using PUF technology in RFID, namely getting schemes that offer destructive privacy in Vaudenay’s model.
{"title":"Security and Privacy of PUF-Based RFID Systems","authors":"F. Ţiplea, C. Andriesei, Cristian Hristea","doi":"10.5772/intechopen.94018","DOIUrl":"https://doi.org/10.5772/intechopen.94018","url":null,"abstract":"The last decade has shown an increasing interest in the use of the physically unclonable function (PUF) technology in the design of radio frequency identification (RFID) systems. PUFs can bring extra security and privacy at the physical level that cannot be obtained by symmetric or asymmetric cryptography at the moment. However, many PUF-based RFID schemes proposed in recent years do not even achieve the lowest privacy level in reputable security and privacy models, such as Vaudenay’s model. In contrast, the lowest privacy in this model can be achieved through standard RFID schemes that use only symmetric cryptography. The purpose of this chapter is to analyze this aspect. Thus, it is emphasized the need to use formal models in the study of the security and privacy of (PUF-based) RFID schemes. We broadly discuss the tag corruption oracle and highlight some aspects that can lead to schemes without security or privacy. We also insist on the need to formally treat the cryptographic properties of PUFs to obtain security and privacy proofs. In the end, we point out a significant benefit of using PUF technology in RFID, namely getting schemes that offer destructive privacy in Vaudenay’s model.","PeriodicalId":438596,"journal":{"name":"Cryptography - Recent Advances and Future Developments","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127854107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-11DOI: 10.5772/intechopen.94835
M. Domb
Optical Communication (OC) for data transmission was introduced more than 30 years ago. It employs two main technologies, fiber optics using a physical wire and Free Space Optical (FSO) wireless transmission. Fiber optics has been well developed over the years in terms of distance, bandwidth, speed, reliability, and other enhancements that contribute to its use. Recent developments in FSO transmission has made it the mainstream and a better alternative compared to RF wireless transmission, concerning all parameters. In this chapter, we focus on advancements in OC that represent innovative ideas of how to enable new methods of secured optical data transmission in different ways and not simply as an extension to current methods and technologies.
{"title":"Advancements in Optical Data Transmission and Security Systems","authors":"M. Domb","doi":"10.5772/intechopen.94835","DOIUrl":"https://doi.org/10.5772/intechopen.94835","url":null,"abstract":"Optical Communication (OC) for data transmission was introduced more than 30 years ago. It employs two main technologies, fiber optics using a physical wire and Free Space Optical (FSO) wireless transmission. Fiber optics has been well developed over the years in terms of distance, bandwidth, speed, reliability, and other enhancements that contribute to its use. Recent developments in FSO transmission has made it the mainstream and a better alternative compared to RF wireless transmission, concerning all parameters. In this chapter, we focus on advancements in OC that represent innovative ideas of how to enable new methods of secured optical data transmission in different ways and not simply as an extension to current methods and technologies.","PeriodicalId":438596,"journal":{"name":"Cryptography - Recent Advances and Future Developments","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126825289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}