首页 > 最新文献

International Conference on Control, Robotics and Intelligent System最新文献

英文 中文
An Empirical Research on the Effectiveness of Different LSTM Architectures on Vietnamese Stock Market 不同LSTM结构对越南股市有效性的实证研究
Pub Date : 1900-01-01 DOI: 10.1145/3437802.3437827
Pham Ngoc Hai, Nguyen Tien Manh, Hoang Trung Hieu, Pham Quoc Chung, N. T. Son, P. Ha, Ngo Tung Son
Stock price prediction is a challenging financial time-series forecasting problem. In recent years, on account of the rapid progression of deep learning, researchers have developed highly accurate, state-of-the-art time-series models. Long short-term memory (LSTM) stands out as one of the most reliable architecture at capturing long-time temporal dependences. In Vietnam, there is a lack of research papers that solely focused on the effectiveness of deep-learning in stock price prediction. This paper surveys three different variations of LSTM (Vanilla, Stacked, Bidirectional) when applied to 20 companies’ stock prices over a period of 5 years from 2015 to 2020 in the VN-index stock exchange. The results show that Bidirectional LSTM is the most accurate model.
{"title":"An Empirical Research on the Effectiveness of Different LSTM Architectures on Vietnamese Stock Market","authors":"Pham Ngoc Hai, Nguyen Tien Manh, Hoang Trung Hieu, Pham Quoc Chung, N. T. Son, P. Ha, Ngo Tung Son","doi":"10.1145/3437802.3437827","DOIUrl":"https://doi.org/10.1145/3437802.3437827","url":null,"abstract":"Stock price prediction is a challenging financial time-series forecasting problem. In recent years, on account of the rapid progression of deep learning, researchers have developed highly accurate, state-of-the-art time-series models. Long short-term memory (LSTM) stands out as one of the most reliable architecture at capturing long-time temporal dependences. In Vietnam, there is a lack of research papers that solely focused on the effectiveness of deep-learning in stock price prediction. This paper surveys three different variations of LSTM (Vanilla, Stacked, Bidirectional) when applied to 20 companies’ stock prices over a period of 5 years from 2015 to 2020 in the VN-index stock exchange. The results show that Bidirectional LSTM is the most accurate model.","PeriodicalId":447986,"journal":{"name":"International Conference on Control, Robotics and Intelligent System","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127554090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
International Conference on Control, Robotics and Intelligent System
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1