首页 > 最新文献

Mathematical statistics and learning最新文献

英文 中文
A rigorous framework for the mean field limit of multilayer neural networks 多层神经网络平均场极限的严格框架
Pub Date : 2023-10-09 DOI: 10.4171/msl/42
Phan-Minh Nguyen, Huy Tuan Pham
We develop a mathematically rigorous framework for multilayer neural networks in the mean field regime. As the network's widths increase, the network's learning trajectory is shown to be well captured by a meaningful and dynamically nonlinear limit (the textit{mean field} limit), which is characterized by a system of ODEs. Our framework applies to a broad range of network architectures, learning dynamics and network initializations. Central to the framework is the new idea of a textit{neuronal embedding}, which comprises of a non-evolving probability space that allows to embed neural networks of arbitrary widths.
我们为平均场状态下的多层神经网络开发了一个数学上严格的框架。随着网络宽度的增加,网络的学习轨迹被一个有意义的动态非线性极限(textit{平均场}极限)很好地捕获,该极限以ode系统为特征。我们的框架适用于广泛的网络架构、学习动态和网络初始化。该框架的核心是textit{神经元嵌入}的新思想,它由一个非进化的概率空间组成,允许嵌入任意宽度的神经网络。
{"title":"A rigorous framework for the mean field limit of multilayer neural networks","authors":"Phan-Minh Nguyen, Huy Tuan Pham","doi":"10.4171/msl/42","DOIUrl":"https://doi.org/10.4171/msl/42","url":null,"abstract":"We develop a mathematically rigorous framework for multilayer neural networks in the mean field regime. As the network's widths increase, the network's learning trajectory is shown to be well captured by a meaningful and dynamically nonlinear limit (the textit{mean field} limit), which is characterized by a system of ODEs. Our framework applies to a broad range of network architectures, learning dynamics and network initializations. Central to the framework is the new idea of a textit{neuronal embedding}, which comprises of a non-evolving probability space that allows to embed neural networks of arbitrary widths. ","PeriodicalId":489458,"journal":{"name":"Mathematical statistics and learning","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135043596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 70
U-statistics of growing order and sub-Gaussian mean estimators with sharp constants 增长阶的u统计量和具有尖锐常数的亚高斯均值估计量
Pub Date : 2023-10-09 DOI: 10.4171/msl/43
Stanislav Minsker
This paper addresses the following question: given a sample of i.i.d. random variables with finite variance, can one construct an estimator of the unknown mean that performs nearly as well as if the data were normally distributed? One of the most popular examples achieving this goal is the median of means estimator. However, it is inefficient in a sense that the constants in the resulting bounds are suboptimal. We show that a permutation-invariant modification of the median of means estimator admits deviation guarantees that are sharp up to $1+o(1)$ factor if the underlying distribution possesses more than $frac{3+sqrt{5}}{2}approx 2.62$ moments and is absolutely continuous with respect to the Lebesgue measure. This result yields potential improvements for a variety of algorithms that rely on the median of means estimator as a building block. At the core of our argument is are the new deviation inequalities for the U-statistics of order that is allowed to grow with the sample size, a result that could be of independent interest.
{"title":"U-statistics of growing order and sub-Gaussian mean estimators with sharp constants","authors":"Stanislav Minsker","doi":"10.4171/msl/43","DOIUrl":"https://doi.org/10.4171/msl/43","url":null,"abstract":"This paper addresses the following question: given a sample of i.i.d. random variables with finite variance, can one construct an estimator of the unknown mean that performs nearly as well as if the data were normally distributed? One of the most popular examples achieving this goal is the median of means estimator. However, it is inefficient in a sense that the constants in the resulting bounds are suboptimal. We show that a permutation-invariant modification of the median of means estimator admits deviation guarantees that are sharp up to $1+o(1)$ factor if the underlying distribution possesses more than $frac{3+sqrt{5}}{2}approx 2.62$ moments and is absolutely continuous with respect to the Lebesgue measure. This result yields potential improvements for a variety of algorithms that rely on the median of means estimator as a building block. At the core of our argument is are the new deviation inequalities for the U-statistics of order that is allowed to grow with the sample size, a result that could be of independent interest.","PeriodicalId":489458,"journal":{"name":"Mathematical statistics and learning","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
Mathematical statistics and learning
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1