首页 > 最新文献

Artificial Intelligence and Autonomous Systems最新文献

英文 中文
A challenge in A(G)I, cybernetics revived in the Ouroboros Model as one algorithm for all thinking A(G)I 中的挑战,控制论在大蛇模型中的复兴,作为一种适用于所有思维的算法
Pub Date : 2024-03-07 DOI: 10.55092/aias20240001
Knud Thomsen
A topical challenge for algorithms in general and for automatic image categorization and generation in particular is presented in the form of a drawing for AI to understand. In a second vein, AI is challenged to produce something similar from verbal description. The aim of the paper is to highlight strengths and deficiencies of current Artificial Intelligence approaches while coarsely sketching a way forward. A general lack of encompassing symbol-embedding and (not only) -grounding in some bodily basis is made responsible for current deficiencies. A concomitant dearth of hierarchical organization of concepts follows suite. As a remedy for these shortcomings, it is proposed to take a wide step back and to newly incorporate aspects of cybernetics and analog control processes. It is claimed that a promising overarching perspective is provided by the Ouroboros Model with a valid and versatile algorithmic backbone for general cognition at all accessible levels of abstraction and capabilities. Reality, rules, truth, and Free Will are all useful abstractions according to the Ouroboros Model. Logic deduction as well as intuitive guesses are claimed as produced on the basis of one compartmentalized memory for schemata and a pattern-matching, i.e., monitoring process termed consumption analysis. The latter directs attention on short (attention proper) and also on long times scales (emotional biases). In this cybernetic approach, discrepancies between expectations and actual activations (e.g., sensory precepts) drive the general process of cognition and at the same time steer the storage of new and adapted memory entries. Dedicated structures in the human brain work in concert according to this scheme.
人工智能要理解一幅图,这是对一般算法,特别是自动图像分类和生成算法的一个挑战。其次,人工智能面临的挑战是如何从口头描述中生成类似的内容。本文旨在强调当前人工智能方法的优势和不足,同时粗略地勾勒出未来的发展方向。当前的不足之处在于普遍缺乏包罗万象的符号嵌入和(不仅是)某种身体基础。随之而来的是缺乏概念的层次组织。为了弥补这些缺陷,有人建议退一步,重新纳入控制论和模拟控制过程的各个方面。我们认为,"大蛇丸模型 "提供了一个前景广阔的总体视角,为所有抽象和能力层面的一般认知提供了一个有效和通用的算法支柱。根据大蛇模型,现实、规则、真理和自由意志都是有用的抽象概念。逻辑演绎和直觉猜测被认为是在对图式进行分区记忆和模式匹配(即消费分析)的基础上产生的。后者将注意力引向短时间(适当的注意力)和长时间(情绪偏差)。在这种控制论方法中,预期与实际激活(如感觉预设)之间的差异会推动认知的一般过程,同时引导新的和经过调整的记忆条目的存储。人脑中的专用结构根据这一方案协同工作。
{"title":"A challenge in A(G)I, cybernetics revived in the Ouroboros Model as one algorithm for all thinking","authors":"Knud Thomsen","doi":"10.55092/aias20240001","DOIUrl":"https://doi.org/10.55092/aias20240001","url":null,"abstract":"A topical challenge for algorithms in general and for automatic image categorization and generation in particular is presented in the form of a drawing for AI to understand. In a second vein, AI is challenged to produce something similar from verbal description. The aim of the paper is to highlight strengths and deficiencies of current Artificial Intelligence approaches while coarsely sketching a way forward. A general lack of encompassing symbol-embedding and (not only) -grounding in some bodily basis is made responsible for current deficiencies. A concomitant dearth of hierarchical organization of concepts follows suite. As a remedy for these shortcomings, it is proposed to take a wide step back and to newly incorporate aspects of cybernetics and analog control processes. It is claimed that a promising overarching perspective is provided by the Ouroboros Model with a valid and versatile algorithmic backbone for general cognition at all accessible levels of abstraction and capabilities. Reality, rules, truth, and Free Will are all useful abstractions according to the Ouroboros Model. Logic deduction as well as intuitive guesses are claimed as produced on the basis of one compartmentalized memory for schemata and a pattern-matching, i.e., monitoring process termed consumption analysis. The latter directs attention on short (attention proper) and also on long times scales (emotional biases). In this cybernetic approach, discrepancies between expectations and actual activations (e.g., sensory precepts) drive the general process of cognition and at the same time steer the storage of new and adapted memory entries. Dedicated structures in the human brain work in concert according to this scheme.","PeriodicalId":496333,"journal":{"name":"Artificial Intelligence and Autonomous Systems","volume":"79 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140077583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Artificial Intelligence and Autonomous Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1