Pablo Andres Sotomayor Vinan, Monik Manish Ruparel, Resha Tandukar, Pranabendu Mitra
The objective of this study was to optimize the coffee content and alcohol content of the formulations of coffee-gelatin shots based on physicochemical, rheological and sensory properties of the products. Because the coffee content and alcohol content influenced those properties of coffee-gelatin shots significantly which were related to the consumers’ acceptance. Thirteen different coffee-gelatin shots for nine formulations based on CCRD were developed and the sensory properties (overall acceptability, color, flavor and texture), L-value, pH and viscosity of coffee-gelatin shots were determined. The regression models were developed to predict the response variables as a function of independent variables. The response surface models were developed to understand the effects of independent variables on the responses. A desirability function was used to determine an optimum formulation using a numerical optimization technique. All contour plots of response surface models were superimposed to visualize an optimum region. The regression models could predict the sensory properties, L-value, pH and viscosity of coffee-gelatin shots as a function of coffee content and alcohol content with an accuracy of 77-99% depending on the properties of coffee-gelatin shots. The coffee content and alcohol content affected the sensory properties, L-value and viscosity of coffee-gelatin shots significantly (p<0.05). The optimization results obtained using numerical and graphical optimization techniques indicated that a combination of coffee (2.50 -3.00 g) and alcohol (5.25-6.75 mL) was the optimum formulation of a coffee-gelatin shots that improved the sensory properties, L-value, pH and viscosity of the coffee-gelatin shots. This optimum formulation of coffee-gelatin shots is expected to be useful for commercial manufacturing of consumers’ desired coffee-gelatin shots.
{"title":"Optimization of Coffee-Gelatin Shot Formulations Based on Physicochemical, Rheological and Sensory Properties Using Response Surface Methodology","authors":"Pablo Andres Sotomayor Vinan, Monik Manish Ruparel, Resha Tandukar, Pranabendu Mitra","doi":"10.5296/jfi.v7i1.21518","DOIUrl":"https://doi.org/10.5296/jfi.v7i1.21518","url":null,"abstract":"The objective of this study was to optimize the coffee content and alcohol content of the formulations of coffee-gelatin shots based on physicochemical, rheological and sensory properties of the products. Because the coffee content and alcohol content influenced those properties of coffee-gelatin shots significantly which were related to the consumers’ acceptance. Thirteen different coffee-gelatin shots for nine formulations based on CCRD were developed and the sensory properties (overall acceptability, color, flavor and texture), L-value, pH and viscosity of coffee-gelatin shots were determined. The regression models were developed to predict the response variables as a function of independent variables. The response surface models were developed to understand the effects of independent variables on the responses. A desirability function was used to determine an optimum formulation using a numerical optimization technique. All contour plots of response surface models were superimposed to visualize an optimum region. The regression models could predict the sensory properties, L-value, pH and viscosity of coffee-gelatin shots as a function of coffee content and alcohol content with an accuracy of 77-99% depending on the properties of coffee-gelatin shots. The coffee content and alcohol content affected the sensory properties, L-value and viscosity of coffee-gelatin shots significantly (p<0.05). The optimization results obtained using numerical and graphical optimization techniques indicated that a combination of coffee (2.50 -3.00 g) and alcohol (5.25-6.75 mL) was the optimum formulation of a coffee-gelatin shots that improved the sensory properties, L-value, pH and viscosity of the coffee-gelatin shots. This optimum formulation of coffee-gelatin shots is expected to be useful for commercial manufacturing of consumers’ desired coffee-gelatin shots.","PeriodicalId":499814,"journal":{"name":"Journal of food industry","volume":"102 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}