首页 > 最新文献

Quantitative and computational methods in behavioral sciences最新文献

英文 中文
Independent validation as a validation method for classification 作为分类验证方法的独立验证
Pub Date : 2023-12-22 DOI: 10.5964/qcmb.12069
Tina Braun, Hannes Eckert, Timo von Oertzen
The use of classifiers provides an alternative to conventional statistical methods. This involves using the accuracy with which data is correctly assigned to a given group by the classifier to apply tests to compare the performance of classifiers. The conventional validation methods for determining the accuracy of classifiers have the disadvantage that the distribution of correct classifications does not follow any known distribution, and therefore, the application of statistical tests is problematic. Independent validation circumvents this problem and allows the use of binomial tests to assess the performance of classifiers. However, independent validation accuracy is subject to bias for small training datasets. The present study shows that a hyperbolic function can be used to estimate the loss in classifier accuracy for independent validation. This function is used to develop three new methods to estimate the classifier accuracy for small training sets more precisely. These methods are compared to two existing methods in a simulation study. The results indicate overall small errors in the estimation of classifier accuracy and indicate that independent validation can be used with small samples. A least square estimation approach seems best suited to estimate the classifier accuracy.
分类器的使用为传统统计方法提供了另一种选择。这包括利用分类器将数据正确分配到给定组别的准确性来进行测试,以比较分类器的性能。确定分类器准确性的传统验证方法有一个缺点,即正确分类的分布并不遵循任何已知的分布,因此统计检验的应用存在问题。独立验证则规避了这一问题,允许使用二叉检验来评估分类器的性能。不过,独立验证的准确性在训练数据集较小的情况下会出现偏差。本研究表明,双曲线函数可用于估算独立验证的分类器准确性损失。利用该函数开发了三种新方法,以更精确地估计小型训练集的分类器准确性。在模拟研究中,这些方法与现有的两种方法进行了比较。结果表明,分类器准确度估算的总体误差较小,表明独立验证可用于小样本。最小平方估计法似乎最适合估计分类器的准确性。
{"title":"Independent validation as a validation method for classification","authors":"Tina Braun, Hannes Eckert, Timo von Oertzen","doi":"10.5964/qcmb.12069","DOIUrl":"https://doi.org/10.5964/qcmb.12069","url":null,"abstract":"The use of classifiers provides an alternative to conventional statistical methods. This involves using the accuracy with which data is correctly assigned to a given group by the classifier to apply tests to compare the performance of classifiers. The conventional validation methods for determining the accuracy of classifiers have the disadvantage that the distribution of correct classifications does not follow any known distribution, and therefore, the application of statistical tests is problematic. Independent validation circumvents this problem and allows the use of binomial tests to assess the performance of classifiers. However, independent validation accuracy is subject to bias for small training datasets. The present study shows that a hyperbolic function can be used to estimate the loss in classifier accuracy for independent validation. This function is used to develop three new methods to estimate the classifier accuracy for small training sets more precisely. These methods are compared to two existing methods in a simulation study. The results indicate overall small errors in the estimation of classifier accuracy and indicate that independent validation can be used with small samples. A least square estimation approach seems best suited to estimate the classifier accuracy.","PeriodicalId":500886,"journal":{"name":"Quantitative and computational methods in behavioral sciences","volume":"36 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating item parameters in multistage designs with the tmt package in R 在R语言中使用tmt包估算多级设计中的项目参数
Pub Date : 2023-11-06 DOI: 10.5964/qcmb.10087
Jan Steinfeld, Alexander Robitzsch

Various likelihood-based methods are available for the parameter estimation of item response theory models (IRT), leading to comparable parameter estimates. Considering multistage testing (MST) designs, Glas (1988; https://doi.org/10.2307/1164950) stated that the conditional maximum likelihood (CML) method in its original formulation leads to severely biased parameter estimates. A modified CML estimation method for MST designs proposed by Zwitser and Maris (2015; https://doi.org/10.1007/s11336-013-9369-6) finally provides asymptotically unbiased item parameter estimates. Steinfeld and Robitzsch (2021b; https://doi.org/10.31234/osf.io/ew27f) complemented this method to MST designs with probabilistic routing strategies. For both proposed modifications additional software solutions are required since design-specific information must be incorporated into the estimation process. An R package that has implemented both modifications is "tmt". In this article, first, the proposed solutions of the CML estimation in MST designs are illustrated, followed by the main part, the demonstration of the CML item parameter estimation with the R package "tmt". The demonstration includes the process of model specification, data simulation, and item parameter estimation, considering two different routing types of deterministic and probabilistic MST designs.

项目反应理论模型(IRT)的参数估计有多种基于似然的方法,导致参数估计具有可比性。考虑到多级测试(MST)设计,Glas (1988;https://doi.org/10.2307/1164950)指出,条件最大似然(CML)方法在其原始公式中导致参数估计严重偏倚。Zwitser和Maris(2015)提出的MST设计改进CML估计方法;https://doi.org/10.1007/s11336-013-9369-6)最后提供渐近无偏的项目参数估计。斯坦菲尔德和罗比奇(2021b;https://doi.org/10.31234/osf.io/ew27f)用概率路由策略将该方法补充到MST设计中。对于这两种建议的修改都需要额外的软件解决方案,因为特定于设计的信息必须纳入评估过程。一个实现了这两个修改的R包是“tmt”。本文首先阐述了MST设计中CML估计的解决方案,然后是正文部分,用R包“tmt”演示了CML项目参数估计。该演示包括模型规范、数据仿真和项目参数估计过程,考虑了两种不同的路由类型的确定性和概率MST设计。
{"title":"Estimating item parameters in multistage designs with the tmt package in R","authors":"Jan Steinfeld, Alexander Robitzsch","doi":"10.5964/qcmb.10087","DOIUrl":"https://doi.org/10.5964/qcmb.10087","url":null,"abstract":"<p xmlns=\"http://www.ncbi.nlm.nih.gov/JATS1\">Various likelihood-based methods are available for the parameter estimation of item response theory models (IRT), leading to comparable parameter estimates. Considering multistage testing (MST) designs, Glas (1988; https://doi.org/10.2307/1164950) stated that the conditional maximum likelihood (CML) method in its original formulation leads to severely biased parameter estimates. A modified CML estimation method for MST designs proposed by Zwitser and Maris (2015; https://doi.org/10.1007/s11336-013-9369-6) finally provides asymptotically unbiased item parameter estimates. Steinfeld and Robitzsch (2021b; https://doi.org/10.31234/osf.io/ew27f) complemented this method to MST designs with probabilistic routing strategies. For both proposed modifications additional software solutions are required since design-specific information must be incorporated into the estimation process. An R package that has implemented both modifications is \"tmt\". In this article, first, the proposed solutions of the CML estimation in MST designs are illustrated, followed by the main part, the demonstration of the CML item parameter estimation with the R package \"tmt\". The demonstration includes the process of model specification, data simulation, and item parameter estimation, considering two different routing types of deterministic and probabilistic MST designs.","PeriodicalId":500886,"journal":{"name":"Quantitative and computational methods in behavioral sciences","volume":"19 16","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Quantitative and computational methods in behavioral sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1