The Internet of Things and spatial computing are increasingly popular in today's technological environment. These devices can sometimes produce counterproductive effects, complicating the interaction between non-expert end users and the device itself. In this paper, we propose a simple, user-friendly, and cost-effective configurable smart mirror, which can display usefully relevant real-time information. This system is designed based on a low-cost Raspberry Pi paired with an LCD screen. The system can connect with a personal computer (PC) through the IEEE 802.15 wireless communication protocol. The preliminary results in this paper show the intuitive usability of the device in daily life.
在当今的技术环境中,物联网和空间计算日益流行。这些设备有时会产生适得其反的效果,使非专业终端用户与设备本身之间的互动变得更加复杂。在本文中,我们提出了一种简单、用户友好、经济高效的可配置智能镜子,它可以显示有用的实时信息。该系统的设计基于低成本的 Raspberry Pi 和 LCD 屏幕。该系统可通过 IEEE 802.15 无线通信协议与个人电脑(PC)连接。本文中的初步结果显示了该设备在日常生活中的直观可用性。
{"title":"Raspberry-PI based Design of An Interactive Smart Mirror for Daily Life","authors":"Joe Reginald Lyons, Ogbonnaya Anicho, E. Secco","doi":"10.54963/dtra.v3i2.259","DOIUrl":"https://doi.org/10.54963/dtra.v3i2.259","url":null,"abstract":"The Internet of Things and spatial computing are increasingly popular in today's technological environment. These devices can sometimes produce counterproductive effects, complicating the interaction between non-expert end users and the device itself. In this paper, we propose a simple, user-friendly, and cost-effective configurable smart mirror, which can display usefully relevant real-time information. This system is designed based on a low-cost Raspberry Pi paired with an LCD screen. The system can connect with a personal computer (PC) through the IEEE 802.15 wireless communication protocol. The preliminary results in this paper show the intuitive usability of the device in daily life.","PeriodicalId":500921,"journal":{"name":"Digital technologies research and applications","volume":"121 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141351750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The well-being and sociability of individuals have always been part of modernity. The development of new technologies that meet these aspirations is receiving increasing attention. Thus, strengthening the desired objectives of these technologies and minimizing their undesirable side effects is the subject of growing commitment. The present contribution aims, in this context, to evaluate and analyze the desired and undesirable effects of the interaction of electromagnetic fields with living tissues in general. These are routines based on mathematical modeling reinforcing the expected functions as well as those of control and protection against undesirable effects. These adverse effects correspond to the “One Health” concept, which encompasses the health of animals, plants and humans, as well as ecological disorders created by human activity. First, in this article, the interactions of electromagnetic fields with tissues are analyzed, involving their thermal biological effects of desired and undesired exposures. The roles of blood and sap fluids in bio-affected tissues are then analyzed. Secondly, the equations governing electromagnetics and bio-heat, as well as their coupled solution are studied. Third, the thermal behavior of tissues and the adverse effects of exposure are examined. Next, monitoring and defending the effects of exposures are discussed. This contribution, supported by a review of the literature, illustrates routines for mathematical modeling of the generalized interaction of electromagnetic fields with living tissues.
{"title":"Analysis of the Interaction Effects of Electromagnetic Fields with Major Living Tissues—One Health Concept Numerical Evaluation Strategy","authors":"Adel Razek","doi":"10.54963/dtra.v3i2.243","DOIUrl":"https://doi.org/10.54963/dtra.v3i2.243","url":null,"abstract":"The well-being and sociability of individuals have always been part of modernity. The development of new technologies that meet these aspirations is receiving increasing attention. Thus, strengthening the desired objectives of these technologies and minimizing their undesirable side effects is the subject of growing commitment. The present contribution aims, in this context, to evaluate and analyze the desired and undesirable effects of the interaction of electromagnetic fields with living tissues in general. These are routines based on mathematical modeling reinforcing the expected functions as well as those of control and protection against undesirable effects. These adverse effects correspond to the “One Health” concept, which encompasses the health of animals, plants and humans, as well as ecological disorders created by human activity. First, in this article, the interactions of electromagnetic fields with tissues are analyzed, involving their thermal biological effects of desired and undesired exposures. The roles of blood and sap fluids in bio-affected tissues are then analyzed. Secondly, the equations governing electromagnetics and bio-heat, as well as their coupled solution are studied. Third, the thermal behavior of tissues and the adverse effects of exposure are examined. Next, monitoring and defending the effects of exposures are discussed. This contribution, supported by a review of the literature, illustrates routines for mathematical modeling of the generalized interaction of electromagnetic fields with living tissues.","PeriodicalId":500921,"journal":{"name":"Digital technologies research and applications","volume":" 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}