首页 > 最新文献

Nano Materials Science最新文献

英文 中文
In situ confined vertical growth of Co2.5Ni0.5Si2O5(OH)4 nanoarrays on rGO for an efficient oxygen evolution reaction Co2.5Ni0.5Si2O5(OH)4纳米阵列在还原氧化石墨烯上原位受限垂直生长,实现高效析氧反应
Pub Date : 2022-04-25 DOI: 10.1016/j.nanoms.2022.04.002
Yang Mu, Xiaoyu Pei, Yunfeng Zhao, Xueying Dong, Zongkui Kou, Miao Cui, Changgong Meng, Yifu Zhang

Rational design of oxygen evolution reaction (OER) catalysts at low cost would greatly benefit the economy. Taking advantage of earth-abundant elements Si, Co and Ni, we produce a unique-structure where cobalt-nickel silicate hydroxide [Co2.5Ni0.5Si2O5(OH)4] is vertically grown on a reduced graphene oxide (rGO) support (CNS@rGO). This is developed as a low-cost and prospective OER catalyst. Compared to cobalt or nickel silicate hydroxide@rGO (CS@rGO and NS@rGO, respectively) nanoarrays, the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 ​mV@10 ​mA ​cm−2. This value is higher than that of CS@rGO and NS@rGO. The CNS@rGO nanoarray has an overpotential of 446 ​mV@100 ​mA ​cm−2, about 1.4 times that of the commercial RuO2 electrocatalyst. The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives. The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement, including a fast electron transfer pathway, short proton/electron diffusion distance, more active metal centers, as well as optimized dual-atomic electron density. Taking advantage of interlay chemical regulation and the in-situ growth method, the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.

合理设计低成本的析氧反应(OER)催化剂将大大提高经济效益。利用地球上丰富的元素Si, Co和Ni,我们生产了一种独特的结构,将钴镍硅酸盐氢氧化物[Co2.5Ni0.5Si2O5(OH)4]垂直生长在还原氧化石墨烯(rGO)载体上(CNS@rGO)。这是一种低成本、有前景的OER催化剂。与钴或硅酸镍hydroxide@rGO(分别为CS@rGO和NS@rGO)纳米阵列相比,双金属CNS@rGO纳米阵列表现出令人印象深刻的OER性能,过电位为307 mV@10 mA cm−2。该值高于CS@rGO和NS@rGO。CNS@rGO纳米阵列的过电位为446 mV@100 mA cm−2,约为商用RuO2电催化剂的1.4倍。所获得的OER活性优于最先进的金属氧化物/氢氧化物及其衍生物。垂直生长的纳米结构和优化的金属-支撑电子相互作用对OER性能的提高起着不可或缺的作用,包括快速的电子转移途径、更短的质子/电子扩散距离、更活跃的金属中心以及优化的双原子电子密度。利用层间化学调控和原位生长的方法,先进结构的CNS@rGO纳米阵列为合理、灵活地设计高效、有前途的OER电催化剂提供了新的视野。
{"title":"In situ confined vertical growth of Co2.5Ni0.5Si2O5(OH)4 nanoarrays on rGO for an efficient oxygen evolution reaction","authors":"Yang Mu, Xiaoyu Pei, Yunfeng Zhao, Xueying Dong, Zongkui Kou, Miao Cui, Changgong Meng, Yifu Zhang","doi":"10.1016/j.nanoms.2022.04.002","DOIUrl":"https://doi.org/10.1016/j.nanoms.2022.04.002","url":null,"abstract":"<p>Rational design of oxygen evolution reaction (OER) catalysts at low cost would greatly benefit the economy. Taking advantage of earth-abundant elements Si, Co and Ni, we produce a unique-structure where cobalt-nickel silicate hydroxide [Co<sub>2.5</sub>Ni<sub>0.5</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>] is vertically grown on a reduced graphene oxide (rGO) support (CNS@rGO). This is developed as a low-cost and prospective OER catalyst. Compared to cobalt or nickel silicate hydroxide@rGO (CS@rGO and NS@rGO, respectively) nanoarrays, the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 ​mV@10 ​mA ​cm<sup>−2</sup>. This value is higher than that of CS@rGO and NS@rGO. The CNS@rGO nanoarray has an overpotential of 446 ​mV@100 ​mA ​cm<sup>−2</sup>, about 1.4 times that of the commercial RuO<sub>2</sub> electrocatalyst. The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives. The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement, including a fast electron transfer pathway, short proton/electron diffusion distance, more active metal centers, as well as optimized dual-atomic electron density. Taking advantage of interlay chemical regulation and the <em>in-situ</em> growth method, the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1