首页 > 最新文献

International Journal of Mechanical System Dynamics最新文献

英文 中文
Vibration control for the solar panels of spacecraft: Innovation methods and potential approaches 航天器太阳能电池板的振动控制:创新方法和潜在途径
Pub Date : 2023-12-30 DOI: 10.1002/msd2.12094
Dongxu Li, Wang Liu
Solar panels on spacecraft are typical kinds of flexible structures. Low-frequency and large-amplitude vibrations usually occur due to the inevitable disturbances of deployment impact, attitude/orbit maneuver, separation/docking impact, and so forth. These vibrations degrade the stability of the spacecraft platform, leading to a reduction in imaging quality and pointing direction accuracy. Vibration control is obligatory during flight missions. Here, we summarize the researches on vibration control of the solar panels. First, typical solar panels used in spacecraft and the specific difficulties in dynamic modeling and control design are introduced. Next, the researches on dynamic modeling methods, decentralized vibration control strategy, and in-orbit vibration controller design technologies are presented sequentially. Finally, a practical example where our method was successfully applied in-orbit is described. In conclusion, the theories, methods, and technologies presented in this review hold significant value for achieving high-precision performance in large spacecraft.
航天器上的太阳能电池板是典型的柔性结构。由于部署冲击、姿态/轨道机动、分离/对接冲击等不可避免的干扰,通常会产生低频和大振幅振动。这些振动会降低航天器平台的稳定性,导致成像质量和指向精度下降。在执行飞行任务时,必须对振动进行控制。在此,我们总结了有关太阳能电池板振动控制的研究。首先,介绍航天器中使用的典型太阳能电池板以及动态建模和控制设计中的具体难点。然后,依次介绍了动态建模方法、分散振动控制策略和在轨振动控制器设计技术的研究。最后,介绍了我们的方法在轨道上成功应用的实际案例。总之,本综述中介绍的理论、方法和技术对于实现大型航天器的高精度性能具有重要价值。
{"title":"Vibration control for the solar panels of spacecraft: Innovation methods and potential approaches","authors":"Dongxu Li, Wang Liu","doi":"10.1002/msd2.12094","DOIUrl":"https://doi.org/10.1002/msd2.12094","url":null,"abstract":"Solar panels on spacecraft are typical kinds of flexible structures. Low-frequency and large-amplitude vibrations usually occur due to the inevitable disturbances of deployment impact, attitude/orbit maneuver, separation/docking impact, and so forth. These vibrations degrade the stability of the spacecraft platform, leading to a reduction in imaging quality and pointing direction accuracy. Vibration control is obligatory during flight missions. Here, we summarize the researches on vibration control of the solar panels. First, typical solar panels used in spacecraft and the specific difficulties in dynamic modeling and control design are introduced. Next, the researches on dynamic modeling methods, decentralized vibration control strategy, and in-orbit vibration controller design technologies are presented sequentially. Finally, a practical example where our method was successfully applied in-orbit is described. In conclusion, the theories, methods, and technologies presented in this review hold significant value for achieving high-precision performance in large spacecraft.","PeriodicalId":501255,"journal":{"name":"International Journal of Mechanical System Dynamics","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139063494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alleviating vibrations along a harmonically driven nonuniform Euler–Bernoulli beam by imposing nodes 通过施加节点缓解谐波驱动非均匀欧拉-伯努利梁的振动
Pub Date : 2023-12-27 DOI: 10.1002/msd2.12090
Melis Baltan-Brunet, Fionna Kopp, Philip D. Cha
A passive approach is developed to quench excess vibration along a harmonically driven, arbitrarily supported, nonuniform Euler–Bernoulli beam with constant thickness (height) and varying width. Vibration suppression is achieved by attaching properly tuned vibration absorbers to enforce nodes, or points of zero vibration, along the beam. An efficient hybrid method is proposed whereby the finite element method is used to model the nonuniform beams, and a formulation based on the assumed modes method is used to determine the required attachment force supplied by each absorber to induce the desired nodes. Knowing the attachment forces needed to induce nodes, design plots are generated for the absorber parameters as a function of the tolerable vibration amplitude for each absorber mass. When the node locations are judiciously chosen, it is possible to dramatically suppress the vibration along a selected region of the beam. As such, sensitive instruments can be placed in this region and will remain nearly stationary. Numerical studies illustrate the application to several systems with various types of nonuniformity, boundary conditions, and attachment and node locations; these examples validate the proposed method to passively control excess vibration by inducing nodes on nonuniform beams subjected to harmonic excitations.
本研究开发了一种被动方法,用于抑制具有恒定厚度(高度)和变化宽度的谐波驱动、任意支撑、非均匀欧拉-伯努利梁的过量振动。通过在梁的强制节点或零振动点上安装适当调谐的振动吸收器来实现振动抑制。本文提出了一种高效的混合方法,即使用有限元法对不均匀梁进行建模,并使用基于假定模态法的公式来确定每个吸振器为诱导所需的节点而提供的所需附着力。了解了诱导节点所需的附着力后,就可以生成吸收器参数与每个吸收器质量的可容忍振动振幅的函数关系设计图。如果节点位置选择得当,就有可能显著抑制横梁选定区域的振动。因此,敏感仪器可以放置在该区域,并几乎保持静止。数值研究说明了几种具有不同类型不均匀性、边界条件、附件和节点位置的系统的应用情况;这些例子验证了所提出的通过在受谐波激励的不均匀梁上诱导节点来被动控制多余振动的方法。
{"title":"Alleviating vibrations along a harmonically driven nonuniform Euler–Bernoulli beam by imposing nodes","authors":"Melis Baltan-Brunet, Fionna Kopp, Philip D. Cha","doi":"10.1002/msd2.12090","DOIUrl":"https://doi.org/10.1002/msd2.12090","url":null,"abstract":"A passive approach is developed to quench excess vibration along a harmonically driven, arbitrarily supported, nonuniform Euler–Bernoulli beam with constant thickness (height) and varying width. Vibration suppression is achieved by attaching properly tuned vibration absorbers to enforce nodes, or points of zero vibration, along the beam. An efficient hybrid method is proposed whereby the finite element method is used to model the nonuniform beams, and a formulation based on the assumed modes method is used to determine the required attachment force supplied by each absorber to induce the desired nodes. Knowing the attachment forces needed to induce nodes, design plots are generated for the absorber parameters as a function of the tolerable vibration amplitude for each absorber mass. When the node locations are judiciously chosen, it is possible to dramatically suppress the vibration along a selected region of the beam. As such, sensitive instruments can be placed in this region and will remain nearly stationary. Numerical studies illustrate the application to several systems with various types of nonuniformity, boundary conditions, and attachment and node locations; these examples validate the proposed method to passively control excess vibration by inducing nodes on nonuniform beams subjected to harmonic excitations.","PeriodicalId":501255,"journal":{"name":"International Journal of Mechanical System Dynamics","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of temperature on tensile and vibration properties of bilayer boron nitride 温度对双层氮化硼拉伸和振动特性的影响
Pub Date : 2023-12-25 DOI: 10.1002/msd2.12093
Demin Zhao, Kexin Fang
Hexagonal boron nitride (h-BN) is a semiconductor material with a wide band gap, holding promising potential for applications in thermal conductivity devices and nanoresonators in the field of microelectronics. Here, molecular dynamics is simulated to investigate the tensile and vibrational behaviors of bilayer h-BN under five different stacking modes across varying temperatures. The mechanical properties of five different stacking modes of h-BN at various temperatures are focused on, including Young's modulus, the ultimate stress, and the ultimate strain. Results indicate that bilayer h-BN nanosheets exhibit anisotropic characteristics, with their tensile properties decreasing as temperature increases. Additionally, we explore the influence of temperature on the natural frequency of bilayer h-BN under five different stacking modes. These results establish a fundamental understanding of the mechanical and vibrational characteristics of bilayer h-BN nanosheets under different stacking modes, contributing to their potential applications in advanced nanodevices operating in extremely high-temperature environments.
六方氮化硼(h-BN)是一种具有宽带隙的半导体材料,在微电子领域的导热设备和纳米声纳器中具有广阔的应用前景。本文模拟分子动力学研究了双层 h-BN 在五种不同堆叠模式下的拉伸和振动行为。重点研究了 h-BN 在不同温度下的五种不同堆叠模式的力学性能,包括杨氏模量、极限应力和极限应变。结果表明,双层 h-BN 纳米片表现出各向异性的特征,其拉伸性能随着温度的升高而降低。此外,我们还探讨了温度对五种不同堆叠模式下双层 h-BN 固有频率的影响。这些结果从根本上理解了双层 h-BN 纳米片在不同堆叠模式下的机械和振动特性,有助于它们在超高温环境下工作的先进纳米器件中的潜在应用。
{"title":"Effect of temperature on tensile and vibration properties of bilayer boron nitride","authors":"Demin Zhao, Kexin Fang","doi":"10.1002/msd2.12093","DOIUrl":"https://doi.org/10.1002/msd2.12093","url":null,"abstract":"Hexagonal boron nitride (h-BN) is a semiconductor material with a wide band gap, holding promising potential for applications in thermal conductivity devices and nanoresonators in the field of microelectronics. Here, molecular dynamics is simulated to investigate the tensile and vibrational behaviors of bilayer h-BN under five different stacking modes across varying temperatures. The mechanical properties of five different stacking modes of h-BN at various temperatures are focused on, including Young's modulus, the ultimate stress, and the ultimate strain. Results indicate that bilayer h-BN nanosheets exhibit anisotropic characteristics, with their tensile properties decreasing as temperature increases. Additionally, we explore the influence of temperature on the natural frequency of bilayer h-BN under five different stacking modes. These results establish a fundamental understanding of the mechanical and vibrational characteristics of bilayer h-BN nanosheets under different stacking modes, contributing to their potential applications in advanced nanodevices operating in extremely high-temperature environments.","PeriodicalId":501255,"journal":{"name":"International Journal of Mechanical System Dynamics","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of friction‐related acoustic emission in bolted joint structures 螺栓连接结构中与摩擦有关的声发射分析
Pub Date : 2023-12-21 DOI: 10.1002/msd2.12091
Jiaying Sun, Huiyi Yang, Dongwu Li, Chao Xu
A bolted joint may be in a state of continuous fretting friction and wear under random oscillatory loading, which makes the bolted joint prone to loosening. Therefore, it is essential to find a way to monitor the contact state of a bolted joint on time and handle it adeptly. Acoustic emission (AE) signals will be generated during the reciprocating friction of the bolted joint interface. Exploring the relationship between the frictional slip features and the acoustic emission characteristics under different bolt preloads can lay the foundation for using the acoustic emission techniques to monitor the pretightening state of bolted joints. This paper experimentally investigates the acoustic emission signals of a bolted joint structure during friction under different preloads, three repeated tests are implemented. The relationship between friction behavior and acoustic emission characteristics under different preloads is studied. The evolution of classical acoustic emission parameters and kinematic parameters with bolt preload levels is also analyzed. The 3‐D topography of the specimens after parametric tests is analyzed. The results show that the characteristics of both burst‐type and continuous‐type acoustic emission can reflect different friction behavior under different bolt preloads. The evolution curves of acoustic emission parameters changed under the interaction of both frictional kinematic parameters and bolt preload levels. For the 3‐D surface topography, the reciprocating friction shears the peaks and fills the surface valleys, and the topography of the scratched surface areas is redistributed.
在随机振荡载荷作用下,螺栓连接可能处于持续摩擦磨损状态,从而导致螺栓连接容易松动。因此,必须找到一种方法来及时监测螺栓连接的接触状态,并进行妥善处理。声发射(AE)信号会在螺栓连接界面的往复摩擦过程中产生。探索不同螺栓预紧力下摩擦滑移特征与声发射特征之间的关系,可为利用声发射技术监测螺栓连接的预紧状态奠定基础。本文通过实验研究了螺栓连接结构在不同预紧力下摩擦时的声发射信号,共进行了三次重复试验。研究了不同预紧力下摩擦行为与声发射特征之间的关系。还分析了经典声发射参数和运动学参数随螺栓预紧力水平的变化。分析了参数测试后试样的三维形貌。结果表明,爆破型和连续型声发射的特征都能反映不同螺栓预紧力下的不同摩擦行为。在摩擦运动学参数和螺栓预紧力水平的相互作用下,声发射参数的演化曲线发生了变化。对于三维表面形貌,往复摩擦剪切了表面峰值,填充了表面谷值,划痕表面区域的形貌重新分布。
{"title":"Analysis of friction‐related acoustic emission in bolted joint structures","authors":"Jiaying Sun, Huiyi Yang, Dongwu Li, Chao Xu","doi":"10.1002/msd2.12091","DOIUrl":"https://doi.org/10.1002/msd2.12091","url":null,"abstract":"A bolted joint may be in a state of continuous fretting friction and wear under random oscillatory loading, which makes the bolted joint prone to loosening. Therefore, it is essential to find a way to monitor the contact state of a bolted joint on time and handle it adeptly. Acoustic emission (AE) signals will be generated during the reciprocating friction of the bolted joint interface. Exploring the relationship between the frictional slip features and the acoustic emission characteristics under different bolt preloads can lay the foundation for using the acoustic emission techniques to monitor the pretightening state of bolted joints. This paper experimentally investigates the acoustic emission signals of a bolted joint structure during friction under different preloads, three repeated tests are implemented. The relationship between friction behavior and acoustic emission characteristics under different preloads is studied. The evolution of classical acoustic emission parameters and kinematic parameters with bolt preload levels is also analyzed. The 3‐D topography of the specimens after parametric tests is analyzed. The results show that the characteristics of both burst‐type and continuous‐type acoustic emission can reflect different friction behavior under different bolt preloads. The evolution curves of acoustic emission parameters changed under the interaction of both frictional kinematic parameters and bolt preload levels. For the 3‐D surface topography, the reciprocating friction shears the peaks and fills the surface valleys, and the topography of the scratched surface areas is redistributed.","PeriodicalId":501255,"journal":{"name":"International Journal of Mechanical System Dynamics","volume":"135 28","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Launching ceremony of the International Society of Mechanical System Dynamics Convened in Beijing, China 国际机械系统动力学学会启动仪式在中国北京举行
Pub Date : 2023-12-21 DOI: 10.1002/msd2.12089
Tong Zhang, Qinbo Zhou, Yanni Zhang, Hang Zhang
{"title":"Launching ceremony of the International Society of Mechanical System Dynamics Convened in Beijing, China","authors":"Tong Zhang, Qinbo Zhou, Yanni Zhang, Hang Zhang","doi":"10.1002/msd2.12089","DOIUrl":"https://doi.org/10.1002/msd2.12089","url":null,"abstract":"","PeriodicalId":501255,"journal":{"name":"International Journal of Mechanical System Dynamics","volume":"37 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic transfer model and applications of a penetrating projectile‐fuze multibody system 穿甲弹-引信多体系统的动态转移模型及应用
Pub Date : 2023-12-21 DOI: 10.1002/msd2.12092
Da Yu, Benqiang Yang, Kai Yan, Changsheng Li, Xiang Ma, Xiangyu Han, He Zhang, Keren Dai
In modern warfare, fortifications are being placed deeper underground and with increased mechanical strength, placing higher demands on the target speed of the penetrating munitions that attack them. In such practical scenarios, penetrating fuze inevitably experience extreme mechanical loads with long pulse durations and high shock strengths. Experimental results indicate that their shock accelerations can even exceed those of the projectile by several times. However, due to the unclear understanding of the dynamic transfer mechanism of the penetrating fuze system under such extreme mechanical conditions, there is still a lack of effective methods to accurately estimate and design protection against the impact loads on the penetrating fuze. This paper focuses on the dynamic response of penetrating munitions and fuzes under high impact, establishing a nonlinear dynamic transfer model for penetrating fuze systems, which can calculate the sensor overload signal of the fuze location. The results show that the relative error between the peak acceleration obtained by the proposed multibody dynamic transfer model and that obtained by experimental tests is only 15.7%, which is much lower than the 26.4% error between finite element simulations and experimental tests. The computational burden of the proposed method mainly lies in the parameter calibration process, which needs to be performed only once for a specific projectile‐fuze system. Once calibrated, the model can rapidly conduct parameter scanning simulations for the projectile mass, target plate strength, and impact velocity with an extremely low computational cost to obtain the response characteristics of the projectile‐fuze system under various operating conditions. This greatly facilitates the practical engineering design of penetrating ammunition fuze.
在现代战争中,防御工事被置于更深的地下,其机械强度也越来越高,这就对攻击这些工事的穿甲弹的目标速度提出了更高的要求。在这种实际情况下,穿甲引信不可避免地要承受长脉冲持续时间和高冲击强度的极端机械负荷。实验结果表明,其冲击加速度甚至可以超过弹丸的数倍。然而,由于对穿甲引信系统在这种极端机械条件下的动态传递机理认识不清,目前仍缺乏有效的方法来准确估计和设计穿甲引信的冲击载荷防护。本文重点研究了贯穿式弹药和引信在高冲击下的动态响应,建立了贯穿式引信系统的非线性动态传递模型,可以计算出引信位置的传感器过载信号。结果表明,所提出的多体动态传递模型得到的峰值加速度与实验测试得到的峰值加速度之间的相对误差仅为 15.7%,远低于有限元模拟与实验测试之间 26.4% 的误差。所提方法的计算负担主要在于参数校准过程,只需对特定的抛射体-引信系统进行一次参数校准。校准完成后,该模型能以极低的计算成本快速对弹丸质量、靶板强度和冲击速度进行参数扫描仿真,从而获得弹丸-引信系统在各种工况下的响应特性。这极大地方便了穿甲弹引信的实际工程设计。
{"title":"Dynamic transfer model and applications of a penetrating projectile‐fuze multibody system","authors":"Da Yu, Benqiang Yang, Kai Yan, Changsheng Li, Xiang Ma, Xiangyu Han, He Zhang, Keren Dai","doi":"10.1002/msd2.12092","DOIUrl":"https://doi.org/10.1002/msd2.12092","url":null,"abstract":"In modern warfare, fortifications are being placed deeper underground and with increased mechanical strength, placing higher demands on the target speed of the penetrating munitions that attack them. In such practical scenarios, penetrating fuze inevitably experience extreme mechanical loads with long pulse durations and high shock strengths. Experimental results indicate that their shock accelerations can even exceed those of the projectile by several times. However, due to the unclear understanding of the dynamic transfer mechanism of the penetrating fuze system under such extreme mechanical conditions, there is still a lack of effective methods to accurately estimate and design protection against the impact loads on the penetrating fuze. This paper focuses on the dynamic response of penetrating munitions and fuzes under high impact, establishing a nonlinear dynamic transfer model for penetrating fuze systems, which can calculate the sensor overload signal of the fuze location. The results show that the relative error between the peak acceleration obtained by the proposed multibody dynamic transfer model and that obtained by experimental tests is only 15.7%, which is much lower than the 26.4% error between finite element simulations and experimental tests. The computational burden of the proposed method mainly lies in the parameter calibration process, which needs to be performed only once for a specific projectile‐fuze system. Once calibrated, the model can rapidly conduct parameter scanning simulations for the projectile mass, target plate strength, and impact velocity with an extremely low computational cost to obtain the response characteristics of the projectile‐fuze system under various operating conditions. This greatly facilitates the practical engineering design of penetrating ammunition fuze.","PeriodicalId":501255,"journal":{"name":"International Journal of Mechanical System Dynamics","volume":"57 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138950969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthotropic plate model for the vibration of multilayered molybdenum disulfide 多层二硫化钼振动的正交各向异性板模型
Pub Date : 2023-11-15 DOI: 10.1002/msd2.12088
Mingqian Li, Lifeng Wang
Molecular dynamics (MD) simulation and orthotropic continuum model that considers interlayer shear are used to investigate the transverse deformation and free transverse vibration of multilayered rectangular molybdenum disulfide (MoS2). The interlayer shear effect is considered in the continuum model by considering the multilayered MoS2 as a continuous uniform orthotropic material. A method for obtaining mode shapes using a single thermal vibration MD simulation is proposed. The frequencies and mode shapes predicted using the orthotropic continuum model and MD simulation agree well. The mechanical problem of multilayered two-dimensional material plate resonator can be solved easily and efficiently by using the finite element method for the orthotropic continuum model.
采用分子动力学(MD)模拟和考虑层间剪切的正交各向异性连续介质模型研究了多层矩形二硫化钼(MoS2)的横向变形和自由横向振动。连续介质模型将多层二硫化钼视为连续的均匀正交各向异性材料,考虑了层间剪切效应。提出了一种利用单次热振动MD模拟获得模态振型的方法。正交各向异性连续介质模型预测的频率和模态振型与MD模拟结果吻合较好。采用正交各向异性连续介质模型的有限元方法可以方便、有效地求解多层二维材料板谐振腔的力学问题。
{"title":"Orthotropic plate model for the vibration of multilayered molybdenum disulfide","authors":"Mingqian Li, Lifeng Wang","doi":"10.1002/msd2.12088","DOIUrl":"https://doi.org/10.1002/msd2.12088","url":null,"abstract":"Molecular dynamics (MD) simulation and orthotropic continuum model that considers interlayer shear are used to investigate the transverse deformation and free transverse vibration of multilayered rectangular molybdenum disulfide (MoS<sub>2</sub>). The interlayer shear effect is considered in the continuum model by considering the multilayered MoS<sub>2</sub> as a continuous uniform orthotropic material. A method for obtaining mode shapes using a single thermal vibration MD simulation is proposed. The frequencies and mode shapes predicted using the orthotropic continuum model and MD simulation agree well. The mechanical problem of multilayered two-dimensional material plate resonator can be solved easily and efficiently by using the finite element method for the orthotropic continuum model.","PeriodicalId":501255,"journal":{"name":"International Journal of Mechanical System Dynamics","volume":"44 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138521808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Mechanical System Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1