首页 > 最新文献

British Journal of Mathematical and Statistical Psychology最新文献

英文 中文
Pairwise stochastic approximation for confirmatory factor analysis of categorical data 用于分类数据确证因子分析的成对随机近似法
Pub Date : 2024-04-27 DOI: 10.1111/bmsp.12347
Giuseppe Alfonzetti, Ruggero Bellio, Yunxiao Chen, Irini Moustaki
Pairwise likelihood is a limited‐information method widely used to estimate latent variable models, including factor analysis of categorical data. It can often avoid evaluating high‐dimensional integrals and, thus, is computationally more efficient than relying on the full likelihood. Despite its computational advantage, the pairwise likelihood approach can still be demanding for large‐scale problems that involve many observed variables. We tackle this challenge by employing an approximation of the pairwise likelihood estimator, which is derived from an optimization procedure relying on stochastic gradients. The stochastic gradients are constructed by subsampling the pairwise log‐likelihood contributions, for which the subsampling scheme controls the per‐iteration computational complexity. The stochastic estimator is shown to be asymptotically equivalent to the pairwise likelihood one. However, finite‐sample performance can be improved by compounding the sampling variability of the data with the uncertainty introduced by the subsampling scheme. We demonstrate the performance of the proposed method using simulation studies and two real data applications.
配对似然法是一种信息有限的方法,广泛用于估计潜在变量模型,包括分类数据的因子分析。它通常可以避免评估高维积分,因此在计算上比依赖完全似然法更有效。尽管成对似然法具有计算优势,但对于涉及许多观察变量的大规模问题来说,它的要求仍然很高。我们通过使用成对似然估计器的近似值来应对这一挑战,该近似值来自于依赖随机梯度的优化程序。随机梯度通过对对数似然贡献进行子采样来构建,子采样方案控制了每次迭代的计算复杂度。结果表明,随机估计器在渐近上等同于成对似然估计器。然而,通过将数据的采样变异性与子采样方案引入的不确定性结合起来,可以提高有限样本的性能。我们通过模拟研究和两个实际数据应用来证明所提方法的性能。
{"title":"Pairwise stochastic approximation for confirmatory factor analysis of categorical data","authors":"Giuseppe Alfonzetti, Ruggero Bellio, Yunxiao Chen, Irini Moustaki","doi":"10.1111/bmsp.12347","DOIUrl":"https://doi.org/10.1111/bmsp.12347","url":null,"abstract":"Pairwise likelihood is a limited‐information method widely used to estimate latent variable models, including factor analysis of categorical data. It can often avoid evaluating high‐dimensional integrals and, thus, is computationally more efficient than relying on the full likelihood. Despite its computational advantage, the pairwise likelihood approach can still be demanding for large‐scale problems that involve many observed variables. We tackle this challenge by employing an approximation of the pairwise likelihood estimator, which is derived from an optimization procedure relying on stochastic gradients. The stochastic gradients are constructed by subsampling the pairwise log‐likelihood contributions, for which the subsampling scheme controls the per‐iteration computational complexity. The stochastic estimator is shown to be asymptotically equivalent to the pairwise likelihood one. However, finite‐sample performance can be improved by compounding the sampling variability of the data with the uncertainty introduced by the subsampling scheme. We demonstrate the performance of the proposed method using simulation studies and two real data applications.","PeriodicalId":501535,"journal":{"name":"British Journal of Mathematical and Statistical Psychology","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
British Journal of Mathematical and Statistical Psychology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1