首页 > 最新文献

Information System and Smart City最新文献

英文 中文
Synthesis of modeling and optimal management of smart grids 智能电网的综合建模与优化管理
Pub Date : 2024-06-06 DOI: 10.59400/issc.v4i1.464
Jihen El Khaldi, L. Bouslimi, M. Lakhoua
Smart grids may be characterized as the amalgamation of electrical grids, communication networks, specialized hardware, and computational intelligence (algorithms). This integration aims to oversee, regulate, and coordinate the generation, distribution, storage, and utilization of energy. Indeed, smart grid technologies have the potential to facilitate the distribution of substantial quantities of power generated from renewable sources. For this purpose, a comprehensive modeling approach is employed to simplify and enhance the feasibility of the task. It introduces a highly intricate system where modeling the components and relationships between entities proves challenging. Optimal energy management is necessary in this case. This paper provides a summary of an investigation into the modeling and optimal management of smart grids. In fact, this work allows a discussion of a hybrid system. Then we briefly introduce the domain of conceptual modeling within the enterprise.
智能电网的特点是将电网、通信网络、专用硬件和计算智能(算法)融为一体。这种整合旨在监督、调节和协调能源的生产、分配、储存和利用。事实上,智能电网技术有可能促进大量可再生能源发电的分配。为此,我们采用了一种综合建模方法来简化和提高任务的可行性。智能电网是一个高度复杂的系统,其中各组成部分和实体之间关系的建模具有挑战性。在这种情况下,优化能源管理是必要的。本文概述了对智能电网建模和优化管理的研究。事实上,这项工作允许对混合系统进行讨论。然后,我们简要介绍了企业内部的概念建模领域。
{"title":"Synthesis of modeling and optimal management of smart grids","authors":"Jihen El Khaldi, L. Bouslimi, M. Lakhoua","doi":"10.59400/issc.v4i1.464","DOIUrl":"https://doi.org/10.59400/issc.v4i1.464","url":null,"abstract":"Smart grids may be characterized as the amalgamation of electrical grids, communication networks, specialized hardware, and computational intelligence (algorithms). This integration aims to oversee, regulate, and coordinate the generation, distribution, storage, and utilization of energy. Indeed, smart grid technologies have the potential to facilitate the distribution of substantial quantities of power generated from renewable sources. For this purpose, a comprehensive modeling approach is employed to simplify and enhance the feasibility of the task. It introduces a highly intricate system where modeling the components and relationships between entities proves challenging. Optimal energy management is necessary in this case. This paper provides a summary of an investigation into the modeling and optimal management of smart grids. In fact, this work allows a discussion of a hybrid system. Then we briefly introduce the domain of conceptual modeling within the enterprise.","PeriodicalId":503854,"journal":{"name":"Information System and Smart City","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141380524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective approach of face mask position detection and recognition 人脸面具位置检测与识别的有效方法
Pub Date : 2024-03-29 DOI: 10.59400/issc.v3i1.467
Om Pradyumana Gupta, Arun Prakash Agarwal, Om Pal
During recent COVID-19 pandemic across the world, face masks became necessary to stop the spread of infection. This has led to challenges with effective detection and recognition of human faces using the existing face detection systems. This paper proposes a Convolutional Neural Network (CNN) based face mask recognition system, which offers two solutions—recognition of the person wearing face mask and position of face mask i.e., whether the mask is correctly worn or not. The proposed model could play instrumental role of face recognition. In the first stage, with the help of Viola-Jones algorithm, the model detects the position of the face mask. In the second stage, we identify the person with by a modified pre-trained face mask recognition DeepMaskNet model facilitates in identifying the person. The proposed model achieves an accuracy of 94% in detecting the face mask position and 99.96% in identifying the masked person. Lastly, a comparison with the existing models is detailed, proving that the proposed model achieves the highest greater performance.
在最近 COVID-19 大流行期间,全球各地都需要佩戴口罩来阻止感染的传播。这给现有的人脸检测系统有效检测和识别人脸带来了挑战。本文提出了一种基于卷积神经网络(CNN)的人脸面具识别系统,它提供了两种解决方案--识别佩戴人脸面具的人和人脸面具的位置,即面具是否正确佩戴。所提出的模型可以在人脸识别中发挥重要作用。在第一阶段,借助 Viola-Jones 算法,模型可以检测出人脸面具的位置。在第二阶段,我们通过经过修改的预训练人脸面具识别 DeepMaskNet 模型来识别人脸。所提出的模型在检测人脸面具位置方面达到了 94% 的准确率,在识别面具人方面达到了 99.96% 的准确率。最后,详细介绍了与现有模型的比较,证明所提出的模型实现了最高的性能。
{"title":"Effective approach of face mask position detection and recognition","authors":"Om Pradyumana Gupta, Arun Prakash Agarwal, Om Pal","doi":"10.59400/issc.v3i1.467","DOIUrl":"https://doi.org/10.59400/issc.v3i1.467","url":null,"abstract":"During recent COVID-19 pandemic across the world, face masks became necessary to stop the spread of infection. This has led to challenges with effective detection and recognition of human faces using the existing face detection systems. This paper proposes a Convolutional Neural Network (CNN) based face mask recognition system, which offers two solutions—recognition of the person wearing face mask and position of face mask i.e., whether the mask is correctly worn or not. The proposed model could play instrumental role of face recognition. In the first stage, with the help of Viola-Jones algorithm, the model detects the position of the face mask. In the second stage, we identify the person with by a modified pre-trained face mask recognition DeepMaskNet model facilitates in identifying the person. The proposed model achieves an accuracy of 94% in detecting the face mask position and 99.96% in identifying the masked person. Lastly, a comparison with the existing models is detailed, proving that the proposed model achieves the highest greater performance.","PeriodicalId":503854,"journal":{"name":"Information System and Smart City","volume":"83 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Information System and Smart City
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1