The thermoelectric alloy N-Si0.96Ge0.04-P irradiated by 60Co gamma-photons is been studied. The temperature dependences of the Seebeck coefficient, power and electronic quality factors, as well as the universal electrical conductivity and effective masses of electrons in the interval (250400)°C are calculated. All these dependences are different from the results previously obtained for SixGe1-x with other compositions (except for effective mass). This should be associated with a significant difference in specific resistivities and concentrations of charge carriers.
{"title":"Determination of the Seebeck Coefficient and Other Thermoelectric Parametersusing Specific Resistivity and Concentration of Charge Carriers of N-Si0.96Ge0.04 Alloy Irradiated by 60Co γ-photons","authors":"Rafiel Tkhinvaleli, Lasha Loria, Zurab Adamia, Irakli Nakhutsrishvili","doi":"10.9734/psij/2024/v28i1817","DOIUrl":"https://doi.org/10.9734/psij/2024/v28i1817","url":null,"abstract":"The thermoelectric alloy N-Si0.96Ge0.04-P irradiated by 60Co gamma-photons is been studied. The temperature dependences of the Seebeck coefficient, power and electronic quality factors, as well as the universal electrical conductivity and effective masses of electrons in the interval (250400)°C are calculated. All these dependences are different from the results previously obtained for SixGe1-x with other compositions (except for effective mass). This should be associated with a significant difference in specific resistivities and concentrations of charge carriers.","PeriodicalId":506799,"journal":{"name":"Physical Science International Journal","volume":"84 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139808270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.9734/psij/2024/v28i1818
O. J. Ugonabo, E. B. Ugwu, K. Okpala, Godsfavour C. Amanekwe
Geomagnetic storms are events which have physical effects on some ionospheric parameters that, to some extent,affects the state and dynamics of the ionosphere with important implications on GNSS applications. Here, the total electron content (TEC) of Brussels (50.80oN, 04.37oE), Madrid (40.43oN, 04.25oW) and Irkutsk (52.22oN, 104.32oE), which are all mid-latitude European stations are compared with Libreville (00.35oN, 09.67oE) and Lusaka (15.43oS, 28.32oE) which are equatorial and low-latitude stations respectively. This study is done over two geomagnetic storms that took place in the solstice period of 2004. Deviations of storm time VTEC from solar quiet (Sq) averages are calculated, analysed and presented. Similarities and differences of storm effects are observed in the European stations with enhancements and depressions. Diurnal solar quiet day variations showed high VTEC during the post-noon hours for all the stations. The VTEC deviations during storm time at Libreville lie within, for Lusaka it is. For the mid-latitude European stations, the deviations are lower such that is recorded at Brussels while is recorded for both Irkutsk and Madrid. Enhancement of VTEC during the daytime storm period is attributable to the super-fountain effect caused by the prompt penetration electric fields (PPEFs) into the ionosphere and magnetosphere while low VTEC at night-time is attributed to the process of recombination. Understanding the behaviour of the ionosphere during geomagnetic storms is important and necessary for a better understanding of the applications of GNSS.
{"title":"Geomagnetic Storm Variation of Vertical Total Electron Content (VTEC) Over Some Euro-African Stations","authors":"O. J. Ugonabo, E. B. Ugwu, K. Okpala, Godsfavour C. Amanekwe","doi":"10.9734/psij/2024/v28i1818","DOIUrl":"https://doi.org/10.9734/psij/2024/v28i1818","url":null,"abstract":"Geomagnetic storms are events which have physical effects on some ionospheric parameters that, to some extent,affects the state and dynamics of the ionosphere with important implications on GNSS applications. Here, the total electron content (TEC) of Brussels (50.80oN, 04.37oE), Madrid (40.43oN, 04.25oW) and Irkutsk (52.22oN, 104.32oE), which are all mid-latitude European stations are compared with Libreville (00.35oN, 09.67oE) and Lusaka (15.43oS, 28.32oE) which are equatorial and low-latitude stations respectively. This study is done over two geomagnetic storms that took place in the solstice period of 2004. Deviations of storm time VTEC from solar quiet (Sq) averages are calculated, analysed and presented. Similarities and differences of storm effects are observed in the European stations with enhancements and depressions. Diurnal solar quiet day variations showed high VTEC during the post-noon hours for all the stations. The VTEC deviations during storm time at Libreville lie within, for Lusaka it is. For the mid-latitude European stations, the deviations are lower such that is recorded at Brussels while is recorded for both Irkutsk and Madrid. Enhancement of VTEC during the daytime storm period is attributable to the super-fountain effect caused by the prompt penetration electric fields (PPEFs) into the ionosphere and magnetosphere while low VTEC at night-time is attributed to the process of recombination. Understanding the behaviour of the ionosphere during geomagnetic storms is important and necessary for a better understanding of the applications of GNSS.","PeriodicalId":506799,"journal":{"name":"Physical Science International Journal","volume":"1 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139808437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.9734/psij/2024/v28i1818
O. J. Ugonabo, E. B. Ugwu, K. Okpala, Godsfavour C. Amanekwe
Geomagnetic storms are events which have physical effects on some ionospheric parameters that, to some extent,affects the state and dynamics of the ionosphere with important implications on GNSS applications. Here, the total electron content (TEC) of Brussels (50.80oN, 04.37oE), Madrid (40.43oN, 04.25oW) and Irkutsk (52.22oN, 104.32oE), which are all mid-latitude European stations are compared with Libreville (00.35oN, 09.67oE) and Lusaka (15.43oS, 28.32oE) which are equatorial and low-latitude stations respectively. This study is done over two geomagnetic storms that took place in the solstice period of 2004. Deviations of storm time VTEC from solar quiet (Sq) averages are calculated, analysed and presented. Similarities and differences of storm effects are observed in the European stations with enhancements and depressions. Diurnal solar quiet day variations showed high VTEC during the post-noon hours for all the stations. The VTEC deviations during storm time at Libreville lie within, for Lusaka it is. For the mid-latitude European stations, the deviations are lower such that is recorded at Brussels while is recorded for both Irkutsk and Madrid. Enhancement of VTEC during the daytime storm period is attributable to the super-fountain effect caused by the prompt penetration electric fields (PPEFs) into the ionosphere and magnetosphere while low VTEC at night-time is attributed to the process of recombination. Understanding the behaviour of the ionosphere during geomagnetic storms is important and necessary for a better understanding of the applications of GNSS.
{"title":"Geomagnetic Storm Variation of Vertical Total Electron Content (VTEC) Over Some Euro-African Stations","authors":"O. J. Ugonabo, E. B. Ugwu, K. Okpala, Godsfavour C. Amanekwe","doi":"10.9734/psij/2024/v28i1818","DOIUrl":"https://doi.org/10.9734/psij/2024/v28i1818","url":null,"abstract":"Geomagnetic storms are events which have physical effects on some ionospheric parameters that, to some extent,affects the state and dynamics of the ionosphere with important implications on GNSS applications. Here, the total electron content (TEC) of Brussels (50.80oN, 04.37oE), Madrid (40.43oN, 04.25oW) and Irkutsk (52.22oN, 104.32oE), which are all mid-latitude European stations are compared with Libreville (00.35oN, 09.67oE) and Lusaka (15.43oS, 28.32oE) which are equatorial and low-latitude stations respectively. This study is done over two geomagnetic storms that took place in the solstice period of 2004. Deviations of storm time VTEC from solar quiet (Sq) averages are calculated, analysed and presented. Similarities and differences of storm effects are observed in the European stations with enhancements and depressions. Diurnal solar quiet day variations showed high VTEC during the post-noon hours for all the stations. The VTEC deviations during storm time at Libreville lie within, for Lusaka it is. For the mid-latitude European stations, the deviations are lower such that is recorded at Brussels while is recorded for both Irkutsk and Madrid. Enhancement of VTEC during the daytime storm period is attributable to the super-fountain effect caused by the prompt penetration electric fields (PPEFs) into the ionosphere and magnetosphere while low VTEC at night-time is attributed to the process of recombination. Understanding the behaviour of the ionosphere during geomagnetic storms is important and necessary for a better understanding of the applications of GNSS.","PeriodicalId":506799,"journal":{"name":"Physical Science International Journal","volume":"50 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The thermoelectric alloy N-Si0.96Ge0.04-P irradiated by 60Co gamma-photons is been studied. The temperature dependences of the Seebeck coefficient, power and electronic quality factors, as well as the universal electrical conductivity and effective masses of electrons in the interval (250400)°C are calculated. All these dependences are different from the results previously obtained for SixGe1-x with other compositions (except for effective mass). This should be associated with a significant difference in specific resistivities and concentrations of charge carriers.
{"title":"Determination of the Seebeck Coefficient and Other Thermoelectric Parametersusing Specific Resistivity and Concentration of Charge Carriers of N-Si0.96Ge0.04 Alloy Irradiated by 60Co γ-photons","authors":"Rafiel Tkhinvaleli, Lasha Loria, Zurab Adamia, Irakli Nakhutsrishvili","doi":"10.9734/psij/2024/v28i1817","DOIUrl":"https://doi.org/10.9734/psij/2024/v28i1817","url":null,"abstract":"The thermoelectric alloy N-Si0.96Ge0.04-P irradiated by 60Co gamma-photons is been studied. The temperature dependences of the Seebeck coefficient, power and electronic quality factors, as well as the universal electrical conductivity and effective masses of electrons in the interval (250400)°C are calculated. All these dependences are different from the results previously obtained for SixGe1-x with other compositions (except for effective mass). This should be associated with a significant difference in specific resistivities and concentrations of charge carriers.","PeriodicalId":506799,"journal":{"name":"Physical Science International Journal","volume":"20 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}