K. Righter, C. Alexander, D. Foustoukos, L. Eckart, C. A. Mertens, H. Busemann, C. Maden, J. Schutt, C. Satterwhite, R. P. Harvey, K. Pando, J. Karner
The Dominion Range (DOM) and Miller Range (MIL) dense collection areas (DCAs) have yielded more than 20 and 200 CO3 chondrites (carbonaceous chondrites of the Ornans chemical group), respectively, over multiple field seasons. Several samples have exhibited primitive characteristics and have been the focus of interest. With so many CO3s recovered from this area, a natural question is if there are multiple pairing groups (where pairing refers to two or more meteorites that are part of a single fall) and if there is additional primitive material that would interest the meteorite community. This comprehensive study looks at all samples using several approaches: field and macroscopic observations; magnetic susceptibility; Cr in ferroan olivine; bulk elemental and isotopic analysis of H, C, N, and noble gas analyses to determine cosmic ray exposure (CRE) ages. Magnetic susceptibilities (measured as logχ) for all samples correlate with their type II (i.e., FeO‐rich) olivine Cr contents, with the most primitive CO3s (3.00) have logχ values near 5, while the higher grade CO3s have logχ values as low as 4.17. Altogether, there appear to be two distinct CO3 pairing groups and five other unpaired CO3s recovered at the Dominion Range: (a) the main DOM 08004 pairing group (16 specimens with a CRE age of 10–16 Ma), (b) the DOM 08006 group (2 specimens incl. DOM 10847 with a CRE age of 25 Ma), (c) DOM 14359 with a CRE age of 6 Ma, (d) DOM 18070 with a CRE age of 8 Ma (these two samples have similar ages but distinct trapped 20Ne contents), (e) DOM 10900 with a CRE age of 5.5 Ma, (f) DOM 18286 (with a CRE age of ~59 Ma), and (g) DOM 19034 (with a CRE age of ~43 Ma). There are three distinct age groupings of 3.00–3.05 COs, highlighting the diverse pristine CO3 materials present in the DOM area. There is one large MIL pairing group (MIL 07099; n = 199; 9–14 Ma CRE age where measured) and one smaller pairing group with distinctly lower Cr2O3 in type II olivines (8 samples of unknown CRE age), and five unpaired or unique CO3s. Notably, the large DOM and MIL pairing groups have 9–16 Ma exposure ages that could have been delivered in a single large fall event spanning ~200 km, two separate falls that were ejection paired, or two separate falls from two separate ejections. Finally, we recommend reclassifying several CO3 to CM2 based on new data and that from previous studies.
多米尼克山脉(DOM)和米勒山脉(MIL)的密集采集区(DCA)在多个野外采集季节分别采集到了 20 多颗和 200 多颗 CO3 钟乳石(奥南化学组碳质钟乳石)。有几个样品表现出原始特征,成为人们关注的焦点。从这一地区采集到如此多的 CO3,一个自然的问题是是否存在多个配对组(配对是指两个或更多的陨石属于一个陨石坠落的一部分),以及是否存在陨石界感兴趣的其他原始物质。这项综合研究采用以下几种方法对所有样本进行研究:实地和宏观观测;磁感应强度;铁橄榄石中的铬含量;H、C、N 的大量元素和同位素分析,以及惰性气体分析,以确定宇宙射线暴露(CRE)年龄。所有样品的磁感应强度(以对数χ测量)与其第二类(即富含氧化铁)橄榄石中的铬含量相关,最原始的 CO3(3.00)的对数χ值接近 5,而较高等级的 CO3 的对数χ值低至 4.17。总之,在 Dominion 山脉似乎有两个不同的 CO3 成对组和另外五个未成对的 CO3:(a) 主要的 DOM 08004 成对组(16 个标本,CRE 年龄为 10-16 Ma),(b) DOM 08006 组(2 个标本,包括 DOM 10847,CRE 年龄为 10-16 Ma),(c) DOM 10848 组(2 个标本,包括 DOM 10848,CRE 年龄为 10-16 Ma),(d) DOM 10849 组(2 个标本,包括 DOM 10848,CRE 年龄为 10-16 Ma)。(c) DOM 14359,CRE 年龄为 6 Ma;(d) DOM 18070,CRE 年龄为 8 Ma(这两个样品的年龄相近,但 20Ne 陷阱含量不同);(e) DOM 10900,CRE 年龄为 5.5 Ma;(f) DOM 18286(CRE 年龄约为 59 Ma);(g) DOM 19034(CRE 年龄约为 43 Ma)。3.00-3.05COs有三个不同的年龄分组,突显了DOM地区存在的多种原始CO3物质。有一个大型 MIL 配对组(MIL 07099;n = 199;测得的 CRE 年龄为 9-14 Ma)和一个较小的配对组,其中 II 型橄榄石中的 Cr2O3 明显较低(8 个 CRE 年龄未知的样品),还有 5 个未配对或独特的 CO3。值得注意的是,大型 DOM 和 MIL 配对组具有 9-16 Ma 的暴露年龄,这些暴露年龄可能是在一次跨度约 200 千米的大型陨落事件中产生的,也可能是在两次独立的陨落事件中产生的,或者是在两次独立的陨落事件中产生的。最后,我们建议根据新的数据和以往研究的数据,将几个 CO3 重新分类为 CM2。
{"title":"Pairing relations within CO3 chondrites recovered at the Dominion Range and Miller Range, Transantarctic mountains: Constraints from chondrule olivines, noble gas, and H, C, N bulk and isotopic compositions","authors":"K. Righter, C. Alexander, D. Foustoukos, L. Eckart, C. A. Mertens, H. Busemann, C. Maden, J. Schutt, C. Satterwhite, R. P. Harvey, K. Pando, J. Karner","doi":"10.1111/maps.14146","DOIUrl":"https://doi.org/10.1111/maps.14146","url":null,"abstract":"The Dominion Range (DOM) and Miller Range (MIL) dense collection areas (DCAs) have yielded more than 20 and 200 CO3 chondrites (carbonaceous chondrites of the Ornans chemical group), respectively, over multiple field seasons. Several samples have exhibited primitive characteristics and have been the focus of interest. With so many CO3s recovered from this area, a natural question is if there are multiple pairing groups (where pairing refers to two or more meteorites that are part of a single fall) and if there is additional primitive material that would interest the meteorite community. This comprehensive study looks at all samples using several approaches: field and macroscopic observations; magnetic susceptibility; Cr in ferroan olivine; bulk elemental and isotopic analysis of H, C, N, and noble gas analyses to determine cosmic ray exposure (CRE) ages. Magnetic susceptibilities (measured as logχ) for all samples correlate with their type II (i.e., FeO‐rich) olivine Cr contents, with the most primitive CO3s (3.00) have logχ values near 5, while the higher grade CO3s have logχ values as low as 4.17. Altogether, there appear to be two distinct CO3 pairing groups and five other unpaired CO3s recovered at the Dominion Range: (a) the main DOM 08004 pairing group (16 specimens with a CRE age of 10–16 Ma), (b) the DOM 08006 group (2 specimens incl. DOM 10847 with a CRE age of 25 Ma), (c) DOM 14359 with a CRE age of 6 Ma, (d) DOM 18070 with a CRE age of 8 Ma (these two samples have similar ages but distinct trapped 20Ne contents), (e) DOM 10900 with a CRE age of 5.5 Ma, (f) DOM 18286 (with a CRE age of ~59 Ma), and (g) DOM 19034 (with a CRE age of ~43 Ma). There are three distinct age groupings of 3.00–3.05 COs, highlighting the diverse pristine CO3 materials present in the DOM area. There is one large MIL pairing group (MIL 07099; n = 199; 9–14 Ma CRE age where measured) and one smaller pairing group with distinctly lower Cr2O3 in type II olivines (8 samples of unknown CRE age), and five unpaired or unique CO3s. Notably, the large DOM and MIL pairing groups have 9–16 Ma exposure ages that could have been delivered in a single large fall event spanning ~200 km, two separate falls that were ejection paired, or two separate falls from two separate ejections. Finally, we recommend reclassifying several CO3 to CM2 based on new data and that from previous studies.","PeriodicalId":508314,"journal":{"name":"Meteoritics & Planetary Science","volume":"270 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139839883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Jonker, Flore van Maldeghem, M. van Ginneken, Lisa Krämer Ruggiu, S. Goderis
Cosmic dust particles originate from a wide variety of solar system and interstellar objects, including sources not identified among meteorite collections. Particles that survive atmospheric entry are retrieved on the Earth's surface as micrometeorites. The recovery of these micrometeorites has recently advanced to rooftop sites. Here, we present the results of an extensive isotopic study on this type of rooftop micrometeorite from the Budel collection, the Netherlands, accreted to the Earth between October 31, 2018 and June 16, 2021. The triple oxygen isotopic compositions of 80 silica‐dominated cosmic spherules (CSs) with diameters ranging between 105 and 515 μm are obtained relying on 213 in situ spot analyses determined using ion microprobe. Our analyzed population spans a large range of isotopic compositions and is dominated by carbonaceous chondritic sources. In situ measurements on several CSs support a possible continuum between 16O‐rich and 16O‐poor compositions following the CM mixing line, showing that 16O‐poor CSs may be genetically related to aqueously altered carbonaceous chondrites. We demonstrate that weathering in the terrestrial environment has negligible effects on the isotopic compositions of the studied CSs and attempt to quantify the effects of kinetic mass‐dependent fractionation and admixture of terrestrial oxygen during atmospheric entry. The results further corroborate previously suggested relations between CS texture and the duration and intensity of the heating pulse experienced during atmospheric deceleration. Finally, the young and well‐constrained terrestrial age of the collection provides insights into the most recent flux of cosmic dust. Our results indicate no major recent changes in the global flux compared with collections sampled over thousand‐ to million‐year time scales and demonstrate that 16O‐poor material is still represented in the modern‐day cosmic dust flux at a relative abundance of ~13%–15%. As such, rooftop micrometeorites represent a valuable reservoir to study the characteristics of the contemporary cosmic dust flux.
{"title":"Oxygen isotopic compositions of fresh rooftop micrometeorites from the Budel collection—Insights into the contemporary cosmic dust flux","authors":"G. Jonker, Flore van Maldeghem, M. van Ginneken, Lisa Krämer Ruggiu, S. Goderis","doi":"10.1111/maps.14145","DOIUrl":"https://doi.org/10.1111/maps.14145","url":null,"abstract":"Cosmic dust particles originate from a wide variety of solar system and interstellar objects, including sources not identified among meteorite collections. Particles that survive atmospheric entry are retrieved on the Earth's surface as micrometeorites. The recovery of these micrometeorites has recently advanced to rooftop sites. Here, we present the results of an extensive isotopic study on this type of rooftop micrometeorite from the Budel collection, the Netherlands, accreted to the Earth between October 31, 2018 and June 16, 2021. The triple oxygen isotopic compositions of 80 silica‐dominated cosmic spherules (CSs) with diameters ranging between 105 and 515 μm are obtained relying on 213 in situ spot analyses determined using ion microprobe. Our analyzed population spans a large range of isotopic compositions and is dominated by carbonaceous chondritic sources. In situ measurements on several CSs support a possible continuum between 16O‐rich and 16O‐poor compositions following the CM mixing line, showing that 16O‐poor CSs may be genetically related to aqueously altered carbonaceous chondrites. We demonstrate that weathering in the terrestrial environment has negligible effects on the isotopic compositions of the studied CSs and attempt to quantify the effects of kinetic mass‐dependent fractionation and admixture of terrestrial oxygen during atmospheric entry. The results further corroborate previously suggested relations between CS texture and the duration and intensity of the heating pulse experienced during atmospheric deceleration. Finally, the young and well‐constrained terrestrial age of the collection provides insights into the most recent flux of cosmic dust. Our results indicate no major recent changes in the global flux compared with collections sampled over thousand‐ to million‐year time scales and demonstrate that 16O‐poor material is still represented in the modern‐day cosmic dust flux at a relative abundance of ~13%–15%. As such, rooftop micrometeorites represent a valuable reservoir to study the characteristics of the contemporary cosmic dust flux.","PeriodicalId":508314,"journal":{"name":"Meteoritics & Planetary Science","volume":"190 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139800694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Fernandes, N. G. Rudraswami, M. Pandey, V. P. Singh
Fe‐rich relict olivine grains are found in a small percentage of cosmic spherules, which are studied here to determine the nature of their precursors. We examined 128 Fe‐rich relict olivine grains with Fa >10 mol% from 53 cosmic spherules of different types collected from Antarctica (Antarctica micrometeorites [AMM]) and deep‐sea sediments (DSS) of the Indian Ocean. Fe‐rich olivines identified in cosmic spherules are close analogs of type II chondrule olivines formed in the early solar system. The olivine analysis shows well‐defined trends in molar Fe/Mn versus Fe/Mg with an affinity for ordinary and carbonaceous chondrites. The minor oxides in olivine are in ranges such as MnO ~0.1–0.8 wt%, Cr2O3 ~0–0.7 wt%, CaO ~0–0.6 wt%, and Al2O3 ~0–0.2 wt%, respectively. The chemical composition suggests that the precursors for these Fe‐rich olivine‐bearing cosmic spherules consist of ordinary chondrites (~21%–23%, AMM‐DSS), carbonaceous chondrites (~17%–36%, AMM‐DSS), and a large fraction overlapping both carbonaceous and ordinary chondrites (~41%–62% AMM‐DSS). The elemental ratios Fe/Si/CI and Mg/Si/CI for the Fe‐rich relict olivines ranging between the values 0.5–1.0 and 1.1–1.7 are compatible with IDPs, Comet 81P/Wild 2 as well as the Asteroid Itokawa and Ryugu, which are indistinguishable from carbonaceous and ordinary chondrites. In addition, pyroxene and olivine assemblages in their Fa versus Fs mol% show strong similarities to EOC chondrites. Our results on Fe‐rich relict olivines show that these grains in cosmic spherules are less common than Mg‐rich olivines, which show a narrow range of chemical compositions identical to those from ordinary chondrites and carbonaceous chondrites, indicating a supplementary contribution of an ordinary chondritic component to the micrometeorite source of dust.
{"title":"Chemical compositions of Fe‐rich relict olivines from cosmic spherules, understanding their links with ordinary and carbonaceous chondrites","authors":"D. Fernandes, N. G. Rudraswami, M. Pandey, V. P. Singh","doi":"10.1111/maps.14143","DOIUrl":"https://doi.org/10.1111/maps.14143","url":null,"abstract":"Fe‐rich relict olivine grains are found in a small percentage of cosmic spherules, which are studied here to determine the nature of their precursors. We examined 128 Fe‐rich relict olivine grains with Fa >10 mol% from 53 cosmic spherules of different types collected from Antarctica (Antarctica micrometeorites [AMM]) and deep‐sea sediments (DSS) of the Indian Ocean. Fe‐rich olivines identified in cosmic spherules are close analogs of type II chondrule olivines formed in the early solar system. The olivine analysis shows well‐defined trends in molar Fe/Mn versus Fe/Mg with an affinity for ordinary and carbonaceous chondrites. The minor oxides in olivine are in ranges such as MnO ~0.1–0.8 wt%, Cr2O3 ~0–0.7 wt%, CaO ~0–0.6 wt%, and Al2O3 ~0–0.2 wt%, respectively. The chemical composition suggests that the precursors for these Fe‐rich olivine‐bearing cosmic spherules consist of ordinary chondrites (~21%–23%, AMM‐DSS), carbonaceous chondrites (~17%–36%, AMM‐DSS), and a large fraction overlapping both carbonaceous and ordinary chondrites (~41%–62% AMM‐DSS). The elemental ratios Fe/Si/CI and Mg/Si/CI for the Fe‐rich relict olivines ranging between the values 0.5–1.0 and 1.1–1.7 are compatible with IDPs, Comet 81P/Wild 2 as well as the Asteroid Itokawa and Ryugu, which are indistinguishable from carbonaceous and ordinary chondrites. In addition, pyroxene and olivine assemblages in their Fa versus Fs mol% show strong similarities to EOC chondrites. Our results on Fe‐rich relict olivines show that these grains in cosmic spherules are less common than Mg‐rich olivines, which show a narrow range of chemical compositions identical to those from ordinary chondrites and carbonaceous chondrites, indicating a supplementary contribution of an ordinary chondritic component to the micrometeorite source of dust.","PeriodicalId":508314,"journal":{"name":"Meteoritics & Planetary Science","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139801016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Tauseef, Ingo Leya, J. Gattacceca, Beda Hofmann, Sönke Szidat, Régis Braucher
We perform a systematic and detailed study of the 14C and 14C‐10Be dating systems for meteorite terrestrial ages. Physical model calculations indicate that neither the 14C production rates nor the 14C/10Be production rate ratios are constant enough to be reasonably approximated by average values. By using simple averages, one introduces a significant size‐dependent bias into the database for meteorite terrestrial ages. By combining modeled 14C production rates and 14C/10Be production rate ratios with (22Ne/21Ne)cos ratios and assuming ~80% ablation losses, relatively easy to use correlations of 14C production rates and 14C/10Be production rate ratios as a function of (22Ne/21Ne)cos are established. The new correlations enable the determination of terrestrial ages that are more accurate than ages based solely on average values for 14C and/or 14C/10Be. We validate the model predictions by measuring 14C activity concentrations, 14C/10Be production rate ratios, 21Necos concentrations, and (22Ne/21Ne)cos ratios in four recently fallen meteorites: Mt. Tazerzait, Boumdeid (2011), Bensour, and SaU 606. The experimental data confirmed the model predictions, although the available data are insufficient to be conclusive. More data from freshly fallen meteorites are needed for validating the model predictions for different chondrite sizes and chondrite types.
{"title":"14C and 14C‐10Be terrestrial age dating system for meteorites—New data for four recently fallen meteorites","authors":"Mohammad Tauseef, Ingo Leya, J. Gattacceca, Beda Hofmann, Sönke Szidat, Régis Braucher","doi":"10.1111/maps.14144","DOIUrl":"https://doi.org/10.1111/maps.14144","url":null,"abstract":"We perform a systematic and detailed study of the 14C and 14C‐10Be dating systems for meteorite terrestrial ages. Physical model calculations indicate that neither the 14C production rates nor the 14C/10Be production rate ratios are constant enough to be reasonably approximated by average values. By using simple averages, one introduces a significant size‐dependent bias into the database for meteorite terrestrial ages. By combining modeled 14C production rates and 14C/10Be production rate ratios with (22Ne/21Ne)cos ratios and assuming ~80% ablation losses, relatively easy to use correlations of 14C production rates and 14C/10Be production rate ratios as a function of (22Ne/21Ne)cos are established. The new correlations enable the determination of terrestrial ages that are more accurate than ages based solely on average values for 14C and/or 14C/10Be. We validate the model predictions by measuring 14C activity concentrations, 14C/10Be production rate ratios, 21Necos concentrations, and (22Ne/21Ne)cos ratios in four recently fallen meteorites: Mt. Tazerzait, Boumdeid (2011), Bensour, and SaU 606. The experimental data confirmed the model predictions, although the available data are insufficient to be conclusive. More data from freshly fallen meteorites are needed for validating the model predictions for different chondrite sizes and chondrite types.","PeriodicalId":508314,"journal":{"name":"Meteoritics & Planetary Science","volume":"22 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139808221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philipp R. Heck, B. Schmitz, Xenia Ritter, S. Rout, N. Kita, C. Defouilloy, Katarina Keating, Kevin Eisenstein, F. Terfelt
Extraterrestrial chrome spinel and chromite extracted from the sedimentary rock record are relicts from coarse micrometeorites and rarely meteorites. They are studied to reconstruct the paleoflux of meteorites to the Earth and the collisional history of the asteroid belt. Minor element concentrations of Ti and V, and oxygen isotopic compositions of these relict minerals were used to classify the meteorite type they stem from, and thus to determine the relative meteorite group abundances through time. While coarse sediment‐dispersed extraterrestrial chrome‐spinel (SEC) grains from ordinary chondrites dominate through the studied time windows in the Phanerozoic, there are exceptions: We have shown that ~467 Ma ago, 1 Ma before the breakup of the L chondrite parent body (LCPB), more than half of the largest (>63 μm diameter) grains were achondritic and originated from differentiated asteroids in contrast to ordinary chondrites which dominated the meteorite flux throughout most of the past 500 Ma. Here, we present a new data set of oxygen isotopic compositions and elemental compositions of 136 grains of a smaller size fraction (32–63 μm) in ~467 Ma old pre‐LCPB limestone from the Lynna River section in western Russia, that was previously studied by elemental analysis. Our study constitutes the most comprehensive oxygen isotopic data set of sediment‐dispersed extraterrestrial chrome spinel to date. We also introduce a Raman spectroscopy‐based method to identify SEC grains and distinguish them from terrestrial chrome spinel with ~97% reliability. We calibrated the Raman method with the established approach using titanium and vanadium concentrations and oxygen isotopic compositions. We find that ordinary chondrites are approximately three times more abundant in the 32–63 μm fraction than achondrites. While abundances of achondrites compared to ordinary chondrites are lower in the 32–63 μm size fraction than in the >63 μm one, achondrites are approximately three times more abundant in the 32–62 μm fraction than they are in the present flux. We find that the sources of SEC grains vary for different grain sizes, mainly as a result of parent body thermal metamorphism. We conclude that the meteorite flux composition ~467 Ma ago ~1 Ma before the breakup of the LCPB was fundamentally different from today and from other time windows studied in the Phanerozoic, but that in contrast to the large size fraction ordinary chondrites dominated the flux in the small size fraction. The high abundance of ordinary chondrites in the studied samples is consistent with the findings based on coarse extraterrestrial chrome‐spinel from other time windows.
{"title":"Unusual sources of fossil micrometeorites deduced from relict chromite in the small size fraction in ~467 Ma old limestone","authors":"Philipp R. Heck, B. Schmitz, Xenia Ritter, S. Rout, N. Kita, C. Defouilloy, Katarina Keating, Kevin Eisenstein, F. Terfelt","doi":"10.1111/maps.14133","DOIUrl":"https://doi.org/10.1111/maps.14133","url":null,"abstract":"Extraterrestrial chrome spinel and chromite extracted from the sedimentary rock record are relicts from coarse micrometeorites and rarely meteorites. They are studied to reconstruct the paleoflux of meteorites to the Earth and the collisional history of the asteroid belt. Minor element concentrations of Ti and V, and oxygen isotopic compositions of these relict minerals were used to classify the meteorite type they stem from, and thus to determine the relative meteorite group abundances through time. While coarse sediment‐dispersed extraterrestrial chrome‐spinel (SEC) grains from ordinary chondrites dominate through the studied time windows in the Phanerozoic, there are exceptions: We have shown that ~467 Ma ago, 1 Ma before the breakup of the L chondrite parent body (LCPB), more than half of the largest (>63 μm diameter) grains were achondritic and originated from differentiated asteroids in contrast to ordinary chondrites which dominated the meteorite flux throughout most of the past 500 Ma. Here, we present a new data set of oxygen isotopic compositions and elemental compositions of 136 grains of a smaller size fraction (32–63 μm) in ~467 Ma old pre‐LCPB limestone from the Lynna River section in western Russia, that was previously studied by elemental analysis. Our study constitutes the most comprehensive oxygen isotopic data set of sediment‐dispersed extraterrestrial chrome spinel to date. We also introduce a Raman spectroscopy‐based method to identify SEC grains and distinguish them from terrestrial chrome spinel with ~97% reliability. We calibrated the Raman method with the established approach using titanium and vanadium concentrations and oxygen isotopic compositions. We find that ordinary chondrites are approximately three times more abundant in the 32–63 μm fraction than achondrites. While abundances of achondrites compared to ordinary chondrites are lower in the 32–63 μm size fraction than in the >63 μm one, achondrites are approximately three times more abundant in the 32–62 μm fraction than they are in the present flux. We find that the sources of SEC grains vary for different grain sizes, mainly as a result of parent body thermal metamorphism. We conclude that the meteorite flux composition ~467 Ma ago ~1 Ma before the breakup of the LCPB was fundamentally different from today and from other time windows studied in the Phanerozoic, but that in contrast to the large size fraction ordinary chondrites dominated the flux in the small size fraction. The high abundance of ordinary chondrites in the studied samples is consistent with the findings based on coarse extraterrestrial chrome‐spinel from other time windows.","PeriodicalId":508314,"journal":{"name":"Meteoritics & Planetary Science","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}