首页 > 最新文献

Actualite Chimique最新文献

英文 中文
[How can an electron induce oxidative damage in DNA in solution]. [电子如何在溶液中引起DNA的氧化损伤]。
Q4 Chemistry Pub Date : 2020-04-01
Jun Ma, Sergey Denisov, Amitava Adhikary, Mehran Mostafavi

DNA damage caused by the dissociative electron attachment (DEA) has been well-studied in the gas and solid phases. However, understanding of this process at the fundamental level in solution is still a challenge. The electrons, after losing their kinetic energy via ionization and excitation events, are thermalized and undergo a multistep hydration process with a time constant of ca. ≤1 ps, to becoming fully trapped as a hydrated or solvated electron (esol - or eaq -). Prior to the formation of esol -, the electron exists in its presolvated (or prehydrated) state (epre -) with no kinetic energy. We used picosecond pulse radiolysis to generate electrons in water or in liquid diethylene glycol (DEG) to observe the dynamics of capture of these electrons by DNA/RNA bases, nucleosides, and nucleotides. Contrary to the hypotheses in the literature that the presolvated electrons (epre -) are captured well by the DNA-nucleosides/tides and the transient negative ions (TNIs) cause strand breaks, we first show that the quasi-free electrons with kinetic energy (eqf -) or epre -cannot be captured by guanine and adenine at very long distances in aqueous solutions with concentrations lower than 50 mM. However, the observation of a substantial decrease in the initial yield of esol - as a function of nucleoside/nucleotide concentrations accompanied by the formation of the nucleotide anion radicals provides direct evidence of an ultrafast step involving radiation-produced electron-mediated DNA damage via DEA. Transient signal analysis suggests that the dissociation channel of TNIs in nucleotide solutions is not even probable up to 0.25 M. On the other hand, in diethylene glycol, we demonstrate that unlike esol - and epre -, eqf - effectively attaches itself to the RNA-nucleoside, ribothymidine, forming the TNI in the excited state (TNI*) that undergoes the N1-C1' glycosidic bond dissociation. Thanks to DEA, this process induced by eqf -, in fact, leads to an oxidation of the parent molecule similar to the hydroxyl radical (OH) leading to the same glycosidic bond (N1-C1') cleavage.

解离电子附着(DEA)引起的DNA损伤在气相和固相中都得到了很好的研究。然而,在解决方案的基本层面上理解这一过程仍然是一个挑战。电子在通过电离和激发事件失去动能后,被加热并经历多步水化过程,时间常数约为≤1ps,以水化或溶剂化电子(esol -或eaq -)的形式被完全捕获。在溶胶-形成之前,电子以预溶解(或预水合)状态(epre -)存在,没有动能。我们使用皮秒脉冲辐射解在水中或液体二甘醇(DEG)中产生电子,观察DNA/RNA碱基、核苷和核苷酸捕获这些电子的动力学。与文献中预溶解电子(eqf -)被dna核苷/潮汐很好地捕获以及瞬态负离子(tni)导致链断裂的假设相反,我们首先证明了在浓度低于50 mM的水溶液中,具有动能的准自由电子(eqf -)或epre -不能被鸟嘌呤和腺嘌呤在很远的距离上捕获。观察到esol -的初始产量随着核苷/核苷酸浓度的变化而大幅下降,并伴随着核苷酸阴离子自由基的形成,这为辐射产生的电子介导的DNA损伤通过DEA的超快步骤提供了直接证据。瞬态信号分析表明,TNI在核苷酸溶液中的解离通道甚至不可能高达0.25 m。另一方面,在二甘醇中,我们证明了与esol -和epre -不同,eqf -有效地将自身附着在rna -核苷,核糖体上,形成激发态(TNI*)的TNI,经历N1-C1'糖苷键解离。由于DEA, eqf -诱导的这一过程实际上导致了与羟基自由基(•OH)相似的母体分子氧化,导致相同的糖苷键(N1-C1')断裂。
{"title":"[How can an electron induce oxidative damage in DNA in solution].","authors":"Jun Ma,&nbsp;Sergey Denisov,&nbsp;Amitava Adhikary,&nbsp;Mehran Mostafavi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>DNA damage caused by the dissociative electron attachment (DEA) has been well-studied in the gas and solid phases. However, understanding of this process at the fundamental level in solution is still a challenge. The electrons, after losing their kinetic energy via ionization and excitation events, are thermalized and undergo a multistep hydration process with a time constant of ca. ≤1 ps, to becoming fully trapped as a hydrated or solvated electron (e<sub>sol</sub> <sup>-</sup> or e<sub>aq</sub> <sup>-</sup>). Prior to the formation of e<sub>sol</sub> <sup>-</sup>, the electron exists in its presolvated (or prehydrated) state (e<sub>pre</sub> <sup>-</sup>) with no kinetic energy. We used picosecond pulse radiolysis to generate electrons in water or in liquid diethylene glycol (DEG) to observe the dynamics of capture of these electrons by DNA/RNA bases, nucleosides, and nucleotides. Contrary to the hypotheses in the literature that the presolvated electrons (e<sub>pre</sub> <sup>-</sup>) are captured well by the DNA-nucleosides/tides and the transient negative ions (TNIs) cause strand breaks, we first show that the quasi-free electrons with kinetic energy (e<sub>qf</sub> <sup>-</sup>) or e<sub>pre</sub> <sup>-</sup>cannot be captured by guanine and adenine at very long distances in aqueous solutions with concentrations lower than 50 mM. However, the observation of a substantial decrease in the initial yield of e<sub>sol</sub> <sup>-</sup> as a function of nucleoside/nucleotide concentrations accompanied by the formation of the nucleotide anion radicals provides direct evidence of an ultrafast step involving radiation-produced electron-mediated DNA damage via DEA. Transient signal analysis suggests that the dissociation channel of TNIs in nucleotide solutions is not even probable up to 0.25 M. On the other hand, in diethylene glycol, we demonstrate that unlike e<sub>sol</sub> <sup>-</sup> and e<sub>pre</sub> <sup>-</sup>, e<sub>qf</sub> <sup>-</sup> effectively attaches itself to the RNA-nucleoside, ribothymidine, forming the TNI in the excited state (TNI*) that undergoes the N1-C1' glycosidic bond dissociation. Thanks to DEA, this process induced by e<sub>qf</sub> <sup>-</sup>, in fact, leads to an oxidation of the parent molecule similar to the hydroxyl radical (<sup>•</sup>OH) leading to the same glycosidic bond (N1-C1') cleavage.</p>","PeriodicalId":50946,"journal":{"name":"Actualite Chimique","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397759/pdf/nihms-1608583.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38232851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Actualite Chimique
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1