Mohamed H. Hassan, Salah Kamel, Mahmoud A. El‐Dabah, Mohammad A. Abido, Hamed Zeinoddini‐Meymand
This paper emphasizes the significance of ensuring adequate damping of electromechanical oscillations in power systems to ensure stable operation. Power System Stabilizers (PSSs) are influential in enhancing system damping and refining dynamic characteristics during transient conditions. However, the efficacy of PSSs is notably contingent on parameter values, particularly in the case of lead‐lag PSSs. In response to this challenge, the paper introduces a Tilt‐Integral‐Derivative (TID)‐based PSS, optimized through a novel optimization algorithm called Hybrid Manta Ray Foraging and Salp Swarm Optimization Algorithms (MRFOSSA). The MRFOSSA algorithm demonstrates robustness and enhanced convergence, validated through benchmark function tests, and outperforms competing algorithms. These superior characteristics of MRFOSSA were employed in optimal tuning of TID‐PSSs to uphold the stability of multi‐machine power systems. The MRFOSSA algorithm demonstrates robustness and enhanced convergence, outperforms competing algorithms in the optimal tuning of TID‐PSS within the Western System Coordinating Council (WSCC)‐3‐machines 9‐bus test system. In summary, the proposed TID‐PSS, coupled with the MRFOSSA algorithm, presents a promising avenue for enhancing power system stability.
{"title":"Optimizing power system stability: A hybrid approach using manta ray foraging and Salp swarm optimization algorithms for electromechanical oscillation mitigation in multi‐machine systems","authors":"Mohamed H. Hassan, Salah Kamel, Mahmoud A. El‐Dabah, Mohammad A. Abido, Hamed Zeinoddini‐Meymand","doi":"10.1049/gtd2.13173","DOIUrl":"https://doi.org/10.1049/gtd2.13173","url":null,"abstract":"This paper emphasizes the significance of ensuring adequate damping of electromechanical oscillations in power systems to ensure stable operation. Power System Stabilizers (PSSs) are influential in enhancing system damping and refining dynamic characteristics during transient conditions. However, the efficacy of PSSs is notably contingent on parameter values, particularly in the case of lead‐lag PSSs. In response to this challenge, the paper introduces a Tilt‐Integral‐Derivative (TID)‐based PSS, optimized through a novel optimization algorithm called Hybrid Manta Ray Foraging and Salp Swarm Optimization Algorithms (MRFOSSA). The MRFOSSA algorithm demonstrates robustness and enhanced convergence, validated through benchmark function tests, and outperforms competing algorithms. These superior characteristics of MRFOSSA were employed in optimal tuning of TID‐PSSs to uphold the stability of multi‐machine power systems. The MRFOSSA algorithm demonstrates robustness and enhanced convergence, outperforms competing algorithms in the optimal tuning of TID‐PSS within the Western System Coordinating Council (WSCC)‐3‐machines 9‐bus test system. In summary, the proposed TID‐PSS, coupled with the MRFOSSA algorithm, presents a promising avenue for enhancing power system stability.","PeriodicalId":510347,"journal":{"name":"IET Generation, Transmission & Distribution","volume":"13 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The occurrence of natural disasters has led to an alarming increase in power interruptions, with severe impacts. Compounding this problem is the uncertain nature of data, which presents significant challenges in enhancing the resiliency of power distribution systems following such events. To tackle these issues, this paper introduces a robust optimization approach for improving the resiliency of power distribution systems. The approach encompasses crew teams for switching actions as part of the restoration process, along with demand response programs and mobile generators (MGs). By simultaneously leveraging these elements and considering the uncertainty associated with electrical load and electrical price, the resiliency of the system is enhanced. The objective function is tri‐level, comprising minimum, maximum, and minimum functions. At the first level, the approach minimizes the cost of commitment of combined heat and power plants (CHPs) by taking into account the location of MGs and the reconfiguration structure in power distribution systems. The second level aims to identify the worst‐case scenario for the uncertainty variables. Finally, the third level focuses on minimizing the total operation cost under the worst‐case scenario using demand response programs. The proposed algorithm is implemented on an IEEE 33‐bus test distribution system, with four different cases investigated.
{"title":"A robust optimization approach for resiliency improvement in power distribution system","authors":"Reza Abshirini, Mojtaba Najafi, Naghi Moaddabi Pirkolachahi","doi":"10.1049/gtd2.13062","DOIUrl":"https://doi.org/10.1049/gtd2.13062","url":null,"abstract":"The occurrence of natural disasters has led to an alarming increase in power interruptions, with severe impacts. Compounding this problem is the uncertain nature of data, which presents significant challenges in enhancing the resiliency of power distribution systems following such events. To tackle these issues, this paper introduces a robust optimization approach for improving the resiliency of power distribution systems. The approach encompasses crew teams for switching actions as part of the restoration process, along with demand response programs and mobile generators (MGs). By simultaneously leveraging these elements and considering the uncertainty associated with electrical load and electrical price, the resiliency of the system is enhanced. The objective function is tri‐level, comprising minimum, maximum, and minimum functions. At the first level, the approach minimizes the cost of commitment of combined heat and power plants (CHPs) by taking into account the location of MGs and the reconfiguration structure in power distribution systems. The second level aims to identify the worst‐case scenario for the uncertainty variables. Finally, the third level focuses on minimizing the total operation cost under the worst‐case scenario using demand response programs. The proposed algorithm is implemented on an IEEE 33‐bus test distribution system, with four different cases investigated.","PeriodicalId":510347,"journal":{"name":"IET Generation, Transmission & Distribution","volume":"524 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139839049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Ismail Saleem, Sajeeb Saha, Tushar Kanti Roy, Subarto Kumar Ghosh
The integration of the renewable energy sources (RESs) into the power grid, drives a significant transformation in the conventional power generation landscape. This transition from traditional synchronous generators to inverter based RESs introduces unique challenges in maintaining the grid frequency stability due to the reduced system inertia. The inherent stochastic nature of the RES power generation, load demand, and grid inertia includes further complexity in the assessment of frequency stability. Existing studies have limitations, including neglecting the stochastic nature of RES generation and load demand fluctuations, relying on limited metrics, and lacking a comprehensive day‐to‐day assessment. To address these shortcomings of the existing approaches, this paper introduces a novel methodology for assessing frequency stability in power grids with high RES penetration. It proposes three indices for evaluating grid frequency sensitivity, resiliency, and permissibility amidst varying RES integration. Utilizing a stochastic approach, the study incorporates uncertainties in RES generation and load demand, offering a comprehensive framework for day‐to‐day frequency stability analysis. Additionally, it presents a systematic method to ascertain the necessary inertial support for maintaining desired frequency reliability in RES‐dominated grids. The effectiveness of these methodologies is validated through a case study on a modified IEEE 39‐bus test system, demonstrating their applicability in ensuring reliable grid operation under high RES scenarios.
{"title":"Assessment and management of frequency stability in low inertia renewable energy rich power grids","authors":"Muhammad Ismail Saleem, Sajeeb Saha, Tushar Kanti Roy, Subarto Kumar Ghosh","doi":"10.1049/gtd2.13129","DOIUrl":"https://doi.org/10.1049/gtd2.13129","url":null,"abstract":"The integration of the renewable energy sources (RESs) into the power grid, drives a significant transformation in the conventional power generation landscape. This transition from traditional synchronous generators to inverter based RESs introduces unique challenges in maintaining the grid frequency stability due to the reduced system inertia. The inherent stochastic nature of the RES power generation, load demand, and grid inertia includes further complexity in the assessment of frequency stability. Existing studies have limitations, including neglecting the stochastic nature of RES generation and load demand fluctuations, relying on limited metrics, and lacking a comprehensive day‐to‐day assessment. To address these shortcomings of the existing approaches, this paper introduces a novel methodology for assessing frequency stability in power grids with high RES penetration. It proposes three indices for evaluating grid frequency sensitivity, resiliency, and permissibility amidst varying RES integration. Utilizing a stochastic approach, the study incorporates uncertainties in RES generation and load demand, offering a comprehensive framework for day‐to‐day frequency stability analysis. Additionally, it presents a systematic method to ascertain the necessary inertial support for maintaining desired frequency reliability in RES‐dominated grids. The effectiveness of these methodologies is validated through a case study on a modified IEEE 39‐bus test system, demonstrating their applicability in ensuring reliable grid operation under high RES scenarios.","PeriodicalId":510347,"journal":{"name":"IET Generation, Transmission & Distribution","volume":"194 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139843067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujun Li, Jingrui Liu, Yonghui Liu, Songhao Yang, Z. Du
This paper demonstrates that the switching of one grid‐connected virtual synchronous generator (VSG) between two control modes, namely constant voltage control (CVC) and current limiting control (CLC) happens at the derived two switching lines. Based on the current limiting inequality, the traditional current‐switched model is transferred to the angle‐switched model proposed here, and the system can be studied as one switched dynamic system. Based on this model, the transient stability of VSG with controller limits is investigated. This is achieved by constructing Lyapunov functions for each subsystem and deriving the relationship between the values of Lyapunov functions constructed under different conditions at the switching moment. The stability of the system is ensured when the Lyapunov function of each subsystem presents a decreasing trend in two consecutive switching intervals. On this basis, the stability boundary of the switching system is derived. Further analysis shows that optimal adjustment of the saturation current angle can make the system reach the maximum stability boundary. Finally, the numerical simulations and experimental tests verify the correctness of the proposed analysis.
{"title":"Transient stability analysis of virtual synchronous generator with current saturation by multiple Lyapunov functions method","authors":"Yujun Li, Jingrui Liu, Yonghui Liu, Songhao Yang, Z. Du","doi":"10.1049/gtd2.13114","DOIUrl":"https://doi.org/10.1049/gtd2.13114","url":null,"abstract":"This paper demonstrates that the switching of one grid‐connected virtual synchronous generator (VSG) between two control modes, namely constant voltage control (CVC) and current limiting control (CLC) happens at the derived two switching lines. Based on the current limiting inequality, the traditional current‐switched model is transferred to the angle‐switched model proposed here, and the system can be studied as one switched dynamic system. Based on this model, the transient stability of VSG with controller limits is investigated. This is achieved by constructing Lyapunov functions for each subsystem and deriving the relationship between the values of Lyapunov functions constructed under different conditions at the switching moment. The stability of the system is ensured when the Lyapunov function of each subsystem presents a decreasing trend in two consecutive switching intervals. On this basis, the stability boundary of the switching system is derived. Further analysis shows that optimal adjustment of the saturation current angle can make the system reach the maximum stability boundary. Finally, the numerical simulations and experimental tests verify the correctness of the proposed analysis.","PeriodicalId":510347,"journal":{"name":"IET Generation, Transmission & Distribution","volume":" October","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139787314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Abd‐El‐Hakeem Mohamed, Salah Kamel, Fendzi Mbasso Wulfran
This study proposes an optimal approach for enhancing the quality of a weak electrical power distribution system by utilizing thyristor‐controlled series capacitors (TCSC). The proposed approach considers various system components, including shunt capacitors and distributed generators that rely on renewable energy sources, which are characterized by uncertainty due to changing weather conditions. The proposed system maximizes the benefits of these components by updating its parameters to improve the distribution power system's quality under all operating conditions, which change due to the varying energy generated by the distributed generators and load changes. The optimal TCSC values are calculated for all operating conditions using the Hyper‐Spherical Search with graded objective functions management strategy (HSSA‐GOFMS) algorithm. The GOFMS converts all restrictions into objective functions with limits and prioritizes the search for objectives according to a sequential system of priorities. This strategy prevents the possibility of non‐convergence. The results demonstrate the effectiveness of the proposed approach in improving the performance quality of a weak electrical distribution system. The proposed strategy achieves the target voltage level limits within nominal values, even with the interference of the system with generators distributed at variable power levels. Furthermore, the proposed approach enhances the performance quality of the system under a wide range of load changes.
{"title":"Metaheuristic‐based graded objective function strategy for optimal thyristor‐controlled series capacitors estimation in weak distribution systems with uncertain distributed generation","authors":"Mohamed Abd‐El‐Hakeem Mohamed, Salah Kamel, Fendzi Mbasso Wulfran","doi":"10.1049/gtd2.13126","DOIUrl":"https://doi.org/10.1049/gtd2.13126","url":null,"abstract":"This study proposes an optimal approach for enhancing the quality of a weak electrical power distribution system by utilizing thyristor‐controlled series capacitors (TCSC). The proposed approach considers various system components, including shunt capacitors and distributed generators that rely on renewable energy sources, which are characterized by uncertainty due to changing weather conditions. The proposed system maximizes the benefits of these components by updating its parameters to improve the distribution power system's quality under all operating conditions, which change due to the varying energy generated by the distributed generators and load changes. The optimal TCSC values are calculated for all operating conditions using the Hyper‐Spherical Search with graded objective functions management strategy (HSSA‐GOFMS) algorithm. The GOFMS converts all restrictions into objective functions with limits and prioritizes the search for objectives according to a sequential system of priorities. This strategy prevents the possibility of non‐convergence. The results demonstrate the effectiveness of the proposed approach in improving the performance quality of a weak electrical distribution system. The proposed strategy achieves the target voltage level limits within nominal values, even with the interference of the system with generators distributed at variable power levels. Furthermore, the proposed approach enhances the performance quality of the system under a wide range of load changes.","PeriodicalId":510347,"journal":{"name":"IET Generation, Transmission & Distribution","volume":"18 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139800997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gas‐insulated switchgears (GIS) are crucial components of high‐voltage power transmission and distribution systems. Internal discharges within GIS have garnered significant attention in the field of power engineering. This study investigates the characteristics of internal discharge shock waves in GIS under an air pressure of 0.3 MPa and three different discharge gap conditions: 1, 1.5, and 2 mm. High‐speed shadowing techniques are used to analyse the propagation speed, morphology, and post‐wave parameters. The study findings reveal that although the characteristics of internal discharge shock waves in GIS noticeably change with the gap size, they also exhibit a consistent trend: as the gap size increases, the initial shock wave accelerates, intensifying the discharge. Simultaneously, the rate of attenuation rises, with the shock wave becoming weaker after ≈30 µs. Furthermore, the post‐wave parameters follow a similar pattern, with an increase in gap size leading to higher parameter values but also a faster decay rate. The parameters decay more rapidly between 10 and 20 µs, slow down between 20 and 30 µs, and ultimately stabilize after around 30 µs. The results of this study hold significant theoretical and practical implications for the monitoring, diagnosis, and prevention of internal discharges in GIS.
{"title":"Investigating the characteristics of internal discharge shock waves in gas‐insulated switchgear under varied gap configurations","authors":"Chenglong Jia, Haochu Peng, Wenbin Zhao, Zhong Tang","doi":"10.1049/gtd2.13091","DOIUrl":"https://doi.org/10.1049/gtd2.13091","url":null,"abstract":"Gas‐insulated switchgears (GIS) are crucial components of high‐voltage power transmission and distribution systems. Internal discharges within GIS have garnered significant attention in the field of power engineering. This study investigates the characteristics of internal discharge shock waves in GIS under an air pressure of 0.3 MPa and three different discharge gap conditions: 1, 1.5, and 2 mm. High‐speed shadowing techniques are used to analyse the propagation speed, morphology, and post‐wave parameters. The study findings reveal that although the characteristics of internal discharge shock waves in GIS noticeably change with the gap size, they also exhibit a consistent trend: as the gap size increases, the initial shock wave accelerates, intensifying the discharge. Simultaneously, the rate of attenuation rises, with the shock wave becoming weaker after ≈30 µs. Furthermore, the post‐wave parameters follow a similar pattern, with an increase in gap size leading to higher parameter values but also a faster decay rate. The parameters decay more rapidly between 10 and 20 µs, slow down between 20 and 30 µs, and ultimately stabilize after around 30 µs. The results of this study hold significant theoretical and practical implications for the monitoring, diagnosis, and prevention of internal discharges in GIS.","PeriodicalId":510347,"journal":{"name":"IET Generation, Transmission & Distribution","volume":"24 1-2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139863500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here, a novel tri‐level energy market model aimed at addressing the challenges posed by demand side management (DSM) in the electricity distribution company (EDC) is introduced. DSM has emerged as a new strategy employed by EDCs to manage and control electricity demand by encouraging end‐users to modify their electricity consumption patterns. This is achieved through the participation of demand response (DR) aggregators, which play a crucial role in assisting end‐users with strategies and technologies to reduce their electricity consumption during peak hours. The proposed tri‐level energy market model consists of four distinct players: EDC, microgrids, aggregators, customers. The interactions between these four actors are modelled within a tri‐level game framework, where the EDC and aggregators act as leaders, and the micro‐grids and customers are followers. This multi‐level and multi‐player game structure allows for a more realistic representation of the complexities involved in DSM programs within the energy market. To demonstrate the effectiveness of the proposed model, a real case study is utilized, showing that the new model better resembles real‐life market conditions. The results illustrate how the tri‐level energy market model can significantly reduce demand fluctuations during peak hours, leading to improved efficiency and effectiveness within DSM programs.
本文介绍了一种新颖的三层能源市场模型,旨在应对配电公司(EDC)需求侧管理(DSM)带来的挑战。需求侧管理已成为配电公司通过鼓励终端用户改变用电模式来管理和控制电力需求的一种新策略。这可以通过需求响应(DR)聚合器的参与来实现,这些聚合器在协助终端用户利用策略和技术减少高峰时段用电量方面发挥着至关重要的作用。拟议的三级能源市场模式由四个不同的参与者组成:EDC、微电网、聚合器和用户。这四个参与者之间的互动是在一个三层博弈框架内模拟的,其中 EDC 和聚合器充当领导者,而微电网和用户则是追随者。这种多层次、多玩家的博弈结构能够更真实地反映能源市场中 DSM 计划的复杂性。为了证明所提模型的有效性,我们利用了一个真实案例进行研究,结果表明新模型更符合现实生活中的市场条件。结果表明,三层能源市场模型可以显著减少高峰时段的需求波动,从而提高 DSM 计划的效率和效果。
{"title":"A multi‐layer–multi‐player game model in electricity market","authors":"Hajar Kafshian, Mohammad Ali Saniee Monfared","doi":"10.1049/gtd2.13125","DOIUrl":"https://doi.org/10.1049/gtd2.13125","url":null,"abstract":"Here, a novel tri‐level energy market model aimed at addressing the challenges posed by demand side management (DSM) in the electricity distribution company (EDC) is introduced. DSM has emerged as a new strategy employed by EDCs to manage and control electricity demand by encouraging end‐users to modify their electricity consumption patterns. This is achieved through the participation of demand response (DR) aggregators, which play a crucial role in assisting end‐users with strategies and technologies to reduce their electricity consumption during peak hours. The proposed tri‐level energy market model consists of four distinct players: EDC, microgrids, aggregators, customers. The interactions between these four actors are modelled within a tri‐level game framework, where the EDC and aggregators act as leaders, and the micro‐grids and customers are followers. This multi‐level and multi‐player game structure allows for a more realistic representation of the complexities involved in DSM programs within the energy market. To demonstrate the effectiveness of the proposed model, a real case study is utilized, showing that the new model better resembles real‐life market conditions. The results illustrate how the tri‐level energy market model can significantly reduce demand fluctuations during peak hours, leading to improved efficiency and effectiveness within DSM programs.","PeriodicalId":510347,"journal":{"name":"IET Generation, Transmission & Distribution","volume":"94 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139809458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}