首页 > 最新文献

Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi最新文献

英文 中文
Comparative Analysis of Deep Learning Models for Silver Price Prediction: CNN, LSTM, GRU and Hybrid Approach 白银价格预测的深度学习模型比较分析:CNN、LSTM、GRU 和混合方法
Pub Date : 2024-02-08 DOI: 10.25294/auiibfd.1404173
Yunus Emre Gür
In this study, the performance of different deep learning algorithms to predict silver prices was evaluated. It was focused on the use of deep learning models such as CNN, LSTM, and GRU for the prediction process, as well as a new hybrid model based on combining these models. Each algorithm was trained on historical silver price data and compared its performance in price prediction using this data. This approach aims to achieve more comprehensive and accurate forecasts by combining the strengths of each model. It also makes a unique contribution to the literature in this area by addressing a specialized area such as the silver market, which is often neglected in financial forecasting. The study presents an innovative approach to financial forecasting and analysis methodologies, highlighting the advantages and potential of deep learning models for time-series data processing. The results compare the ability of these algorithms to analyze silver prices based on historical data only and to assess past trends. The study showed that these algorithms exhibit different performances in analyzing historical data. In conclusion, this study compared the performance of different deep learning algorithms for predicting silver prices based on historical data and found that the CNN-LSTM-GRU hybrid model has the potential to make better predictions. These results can provide guidance to researchers working on financial analysis and forecasting.
本研究评估了不同深度学习算法在预测白银价格方面的性能。重点是在预测过程中使用 CNN、LSTM 和 GRU 等深度学习模型,以及基于这些模型组合的新混合模型。每种算法都在历史白银价格数据上进行了训练,并比较了其使用这些数据进行价格预测的性能。这种方法旨在通过结合每个模型的优势,实现更全面、更准确的预测。该研究还针对白银市场这样一个在金融预测中经常被忽视的专业领域,为该领域的文献做出了独特的贡献。该研究提出了一种创新的金融预测和分析方法,突出了深度学习模型在时间序列数据处理方面的优势和潜力。研究结果比较了这些算法仅根据历史数据分析白银价格和评估过去趋势的能力。研究表明,这些算法在分析历史数据时表现出不同的性能。总之,本研究比较了不同深度学习算法基于历史数据预测白银价格的性能,发现 CNN-LSTM-GRU 混合模型有可能做出更好的预测。这些结果可以为从事金融分析和预测的研究人员提供指导。
{"title":"Comparative Analysis of Deep Learning Models for Silver Price Prediction: CNN, LSTM, GRU and Hybrid Approach","authors":"Yunus Emre Gür","doi":"10.25294/auiibfd.1404173","DOIUrl":"https://doi.org/10.25294/auiibfd.1404173","url":null,"abstract":"In this study, the performance of different deep learning algorithms to predict silver prices was evaluated. It was focused on the use of deep learning models such as CNN, LSTM, and GRU for the prediction process, as well as a new hybrid model based on combining these models. Each algorithm was trained on historical silver price data and compared its performance in price prediction using this data. This approach aims to achieve more comprehensive and accurate forecasts by combining the strengths of each model. It also makes a unique contribution to the literature in this area by addressing a specialized area such as the silver market, which is often neglected in financial forecasting. The study presents an innovative approach to financial forecasting and analysis methodologies, highlighting the advantages and potential of deep learning models for time-series data processing. The results compare the ability of these algorithms to analyze silver prices based on historical data only and to assess past trends. The study showed that these algorithms exhibit different performances in analyzing historical data. In conclusion, this study compared the performance of different deep learning algorithms for predicting silver prices based on historical data and found that the CNN-LSTM-GRU hybrid model has the potential to make better predictions. These results can provide guidance to researchers working on financial analysis and forecasting.","PeriodicalId":513017,"journal":{"name":"Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi","volume":" 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139792996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Deep Learning Models for Silver Price Prediction: CNN, LSTM, GRU and Hybrid Approach 白银价格预测的深度学习模型比较分析:CNN、LSTM、GRU 和混合方法
Pub Date : 2024-02-08 DOI: 10.25294/auiibfd.1404173
Yunus Emre Gür
In this study, the performance of different deep learning algorithms to predict silver prices was evaluated. It was focused on the use of deep learning models such as CNN, LSTM, and GRU for the prediction process, as well as a new hybrid model based on combining these models. Each algorithm was trained on historical silver price data and compared its performance in price prediction using this data. This approach aims to achieve more comprehensive and accurate forecasts by combining the strengths of each model. It also makes a unique contribution to the literature in this area by addressing a specialized area such as the silver market, which is often neglected in financial forecasting. The study presents an innovative approach to financial forecasting and analysis methodologies, highlighting the advantages and potential of deep learning models for time-series data processing. The results compare the ability of these algorithms to analyze silver prices based on historical data only and to assess past trends. The study showed that these algorithms exhibit different performances in analyzing historical data. In conclusion, this study compared the performance of different deep learning algorithms for predicting silver prices based on historical data and found that the CNN-LSTM-GRU hybrid model has the potential to make better predictions. These results can provide guidance to researchers working on financial analysis and forecasting.
本研究评估了不同深度学习算法在预测白银价格方面的性能。重点是在预测过程中使用 CNN、LSTM 和 GRU 等深度学习模型,以及基于这些模型组合的新混合模型。每种算法都在历史白银价格数据上进行了训练,并比较了其使用这些数据进行价格预测的性能。这种方法旨在通过结合每个模型的优势,实现更全面、更准确的预测。该研究还针对白银市场这样一个在金融预测中经常被忽视的专业领域,为该领域的文献做出了独特的贡献。该研究提出了一种创新的金融预测和分析方法,突出了深度学习模型在时间序列数据处理方面的优势和潜力。研究结果比较了这些算法仅根据历史数据分析白银价格和评估过去趋势的能力。研究表明,这些算法在分析历史数据时表现出不同的性能。总之,本研究比较了不同深度学习算法基于历史数据预测白银价格的性能,发现 CNN-LSTM-GRU 混合模型有可能做出更好的预测。这些结果可以为从事金融分析和预测的研究人员提供指导。
{"title":"Comparative Analysis of Deep Learning Models for Silver Price Prediction: CNN, LSTM, GRU and Hybrid Approach","authors":"Yunus Emre Gür","doi":"10.25294/auiibfd.1404173","DOIUrl":"https://doi.org/10.25294/auiibfd.1404173","url":null,"abstract":"In this study, the performance of different deep learning algorithms to predict silver prices was evaluated. It was focused on the use of deep learning models such as CNN, LSTM, and GRU for the prediction process, as well as a new hybrid model based on combining these models. Each algorithm was trained on historical silver price data and compared its performance in price prediction using this data. This approach aims to achieve more comprehensive and accurate forecasts by combining the strengths of each model. It also makes a unique contribution to the literature in this area by addressing a specialized area such as the silver market, which is often neglected in financial forecasting. The study presents an innovative approach to financial forecasting and analysis methodologies, highlighting the advantages and potential of deep learning models for time-series data processing. The results compare the ability of these algorithms to analyze silver prices based on historical data only and to assess past trends. The study showed that these algorithms exhibit different performances in analyzing historical data. In conclusion, this study compared the performance of different deep learning algorithms for predicting silver prices based on historical data and found that the CNN-LSTM-GRU hybrid model has the potential to make better predictions. These results can provide guidance to researchers working on financial analysis and forecasting.","PeriodicalId":513017,"journal":{"name":"Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi","volume":"125 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139852815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Support for a Religious System in Turkey: A World Values Survey Analysis 土耳其对宗教制度的支持:世界价值观调查分析
Pub Date : 2024-01-18 DOI: 10.25294/auiibfd.1371753
Ezgi Elçi
Bu çalışma Türkiye’de dini bir yönetime hangi seçmen gruplarının destek verdiğini Dünya Değerler Araştırması verisi kullanarak incelemektedir. Cumhuriyetin ilk yıllarından beri dindar muhafazakârlar ve seküler gruplar arasındaki ayrışma bugün de hala devam etmektedir. İki grup arasındaki bu ayrışma daha önceden merkez-çevre teorisi ile açıklansa da yakın dönemde Türkiye siyasetinde yaşanan değişiklikler ile merkez ve çevre arasındaki ayırım bir kültür mücadelesine (kulturkampf) evirilmiştir. Çalışmamız, bu ayrışmanın temel aldığı değişkenler özelinde göstermektedir ki şehirde yaşayan, cinsiyet eşitliğine daha fazla destek veren veya Cumhuriyet Halk Partisi ile Millet İttifakını diğer partilere tercih eden katılımcılar dini yönetime daha az onay vermektedir. Bilime daha şüpheci yaklaşan, sol-sağ düzleminde kendini sağa yerleştiren veya Adalet ve Kalkınma Partisi ile Cumhur İttifakını diğer partilere tercih eden seçmenler ise dini yönetime daha fazla destek vermektedir.
本研究利用世界价值观调查(World Values Survey)的数据分析了土耳其哪些选民群体支持宗教政府。自共和国成立初期以来,宗教保守派与世俗团体之间的分歧一直持续至今。尽管这两个群体之间的分歧以前可以用中心-边缘理论来解释,但随着土耳其政治的最新变化,中心与边缘之间的区别已演变为文化斗争(kulturkampf)。就这种分歧所基于的变量而言,我们的研究表明,居住在城市、更支持性别平等或相对于其他党派更倾向于共和人民党和小米联盟的参与者对宗教统治的认可度较低。另一方面,对科学持怀疑态度的选民、在左右平面上处于右翼的选民或相对于其他政党更倾向于正义与发展党和人民联盟的选民则更支持宗教统治。
{"title":"Support for a Religious System in Turkey: A World Values Survey Analysis","authors":"Ezgi Elçi","doi":"10.25294/auiibfd.1371753","DOIUrl":"https://doi.org/10.25294/auiibfd.1371753","url":null,"abstract":"Bu çalışma Türkiye’de dini bir yönetime hangi seçmen gruplarının destek verdiğini Dünya Değerler Araştırması verisi kullanarak incelemektedir. Cumhuriyetin ilk yıllarından beri dindar muhafazakârlar ve seküler gruplar arasındaki ayrışma bugün de hala devam etmektedir. İki grup arasındaki bu ayrışma daha önceden merkez-çevre teorisi ile açıklansa da yakın dönemde Türkiye siyasetinde yaşanan değişiklikler ile merkez ve çevre arasındaki ayırım bir kültür mücadelesine (kulturkampf) evirilmiştir. Çalışmamız, bu ayrışmanın temel aldığı değişkenler özelinde göstermektedir ki şehirde yaşayan, cinsiyet eşitliğine daha fazla destek veren veya Cumhuriyet Halk Partisi ile Millet İttifakını diğer partilere tercih eden katılımcılar dini yönetime daha az onay vermektedir. Bilime daha şüpheci yaklaşan, sol-sağ düzleminde kendini sağa yerleştiren veya Adalet ve Kalkınma Partisi ile Cumhur İttifakını diğer partilere tercih eden seçmenler ise dini yönetime daha fazla destek vermektedir.","PeriodicalId":513017,"journal":{"name":"Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140504183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1