首页 > 最新文献

النشرة المعلوماتية في الحاسبات والمعلومات最新文献

英文 中文
خمسة عقود من نماذج تقدير تكلفة البرمجيات: دراسة استقصائية 五十年来的软件成本计算模式:调查
Pub Date : 2024-07-03 DOI: 10.21608/fcihib.2024.261210.1104
صفا عزام, اسامة امام, معتصم دراز
{"title":"خمسة عقود من نماذج تقدير تكلفة البرمجيات: دراسة استقصائية","authors":"صفا عزام, اسامة امام, معتصم دراز","doi":"10.21608/fcihib.2024.261210.1104","DOIUrl":"https://doi.org/10.21608/fcihib.2024.261210.1104","url":null,"abstract":"","PeriodicalId":515131,"journal":{"name":"النشرة المعلوماتية في الحاسبات والمعلومات","volume":"226 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141681394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Survey on Advances in Arabic Long-Text Summarization Strategies 阿拉伯语长文本摘要策略进展调查
Pub Date : 2024-07-01 DOI: 10.21608/fcihib.2024.258854.1103
Mostafa Magdy, سلوى أسامة, Ensaf Hussein Mohamed
{"title":"A Survey on Advances in Arabic Long-Text Summarization Strategies","authors":"Mostafa Magdy, سلوى أسامة, Ensaf Hussein Mohamed","doi":"10.21608/fcihib.2024.258854.1103","DOIUrl":"https://doi.org/10.21608/fcihib.2024.258854.1103","url":null,"abstract":"","PeriodicalId":515131,"journal":{"name":"النشرة المعلوماتية في الحاسبات والمعلومات","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141706430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
تقنيات اكتشاف الأخبار الكاذبة : مراجعة 假新闻检测技术:回顾
Pub Date : 2024-03-10 DOI: 10.21608/fcihib.2024.234205.1094
مصطفى كمال محمود, د. عزت سعد, نرمين عثمان
{"title":"تقنيات اكتشاف الأخبار الكاذبة : مراجعة","authors":"مصطفى كمال محمود, د. عزت سعد, نرمين عثمان","doi":"10.21608/fcihib.2024.234205.1094","DOIUrl":"https://doi.org/10.21608/fcihib.2024.234205.1094","url":null,"abstract":"","PeriodicalId":515131,"journal":{"name":"النشرة المعلوماتية في الحاسبات والمعلومات","volume":"23 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140396594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient Vanishing Generative Adversial Networks Optimization In Medical Imaging: A Survey 医学成像中的梯度消失生成式逆向网络优化:调查
Pub Date : 2024-02-27 DOI: 10.21608/fcihib.2024.74835.1046
Mustafa AbdulRazek, Ghada Khoriba, Mohamed Belal
{"title":"Gradient Vanishing Generative Adversial Networks Optimization In Medical Imaging: A Survey","authors":"Mustafa AbdulRazek, Ghada Khoriba, Mohamed Belal","doi":"10.21608/fcihib.2024.74835.1046","DOIUrl":"https://doi.org/10.21608/fcihib.2024.74835.1046","url":null,"abstract":"","PeriodicalId":515131,"journal":{"name":"النشرة المعلوماتية في الحاسبات والمعلومات","volume":"249 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140427997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Users Review’s on Software Defect Prediction Utilizing Machine Learning methods 用户对利用机器学习方法进行软件缺陷预测的评论
Pub Date : 2024-01-12 DOI: 10.21608/fcihib.2024.199454.1082
اسامه امام, محمود الصباغ, مني جمال, تامر مدحت
{"title":"Users Review’s on Software Defect Prediction Utilizing Machine Learning methods","authors":"اسامه امام, محمود الصباغ, مني جمال, تامر مدحت","doi":"10.21608/fcihib.2024.199454.1082","DOIUrl":"https://doi.org/10.21608/fcihib.2024.199454.1082","url":null,"abstract":"","PeriodicalId":515131,"journal":{"name":"النشرة المعلوماتية في الحاسبات والمعلومات","volume":"17 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139532465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparative Study Of Artificial Intelligence Techniques For Categorization And Prediction Of Heart Diseases 人工智能技术在心脏病分类和预测方面的比较研究
Pub Date : 2024-01-01 DOI: 10.21608/fcihib.2023.211465.1087
عبدالله رضا رشوان, ليلى الفنجري, صفاء عزام
—Heart failure (HF) is one of the most common diseases in recent years, and a large number of people die annually around the world from it. The heart is considered one of the most important organs in the human body, so it requires high accuracy when predicting the presence of heart disease or not, as an error in prediction may cause human death, so it requires a high-accuracy method in predicting HF. Artificial intelligence (AI) plays a large and important role in many fields today, especially in the medical field, as AI helps doctors obtain a quick and accurate diagnosis of the patient’s condition, which contributes to saving time during the diagnosis. It is important to predict HF using AI to help with rapid and accurate diagnosis and thus reduce the number of deaths from this disease. AI techniques increase the accuracy of predicting whether or not HF is present compared to traditional methods. Also, in rural areas where there are fewer physicians, it is very important to provide such technologies to aid in diagnosis. Many studies point to new AI-based HF prediction techniques. These technologies relied on different algorithms and datasets of different sizes and types. Each of these technologies has advantages and limitations. Therefore, this paper presents an illustrative study of the most advanced AI methods for HF prediction. This study also included a comparison between the different methods based on the most famous standards.
-心力衰竭(HF)是近年来最常见的疾病之一,全世界每年都有大量的人死于这种疾病。心脏被认为是人体最重要的器官之一,因此在预测是否患有心脏病时需要很高的准确性,因为预测错误可能会导致人类死亡,因此需要一种高准确性的方法来预测心力衰竭。人工智能(AI)在当今许多领域都发挥着巨大而重要的作用,尤其是在医疗领域,因为人工智能可以帮助医生快速、准确地诊断病人的病情,从而节省诊断时间。利用人工智能预测高频非常重要,有助于快速准确地诊断,从而减少这种疾病造成的死亡人数。与传统方法相比,人工智能技术提高了预测是否患有高血压的准确性。此外,在医生较少的农村地区,提供此类技术来帮助诊断也非常重要。许多研究都指出了基于人工智能的新型高频预测技术。这些技术依赖于不同的算法以及不同规模和类型的数据集。每种技术都有其优势和局限性。因此,本文对用于高频预测的最先进人工智能方法进行了说明性研究。这项研究还包括基于最著名标准的不同方法之间的比较。
{"title":"A Comparative Study Of Artificial Intelligence Techniques For Categorization And Prediction Of Heart Diseases","authors":"عبدالله رضا رشوان, ليلى الفنجري, صفاء عزام","doi":"10.21608/fcihib.2023.211465.1087","DOIUrl":"https://doi.org/10.21608/fcihib.2023.211465.1087","url":null,"abstract":"—Heart failure (HF) is one of the most common diseases in recent years, and a large number of people die annually around the world from it. The heart is considered one of the most important organs in the human body, so it requires high accuracy when predicting the presence of heart disease or not, as an error in prediction may cause human death, so it requires a high-accuracy method in predicting HF. Artificial intelligence (AI) plays a large and important role in many fields today, especially in the medical field, as AI helps doctors obtain a quick and accurate diagnosis of the patient’s condition, which contributes to saving time during the diagnosis. It is important to predict HF using AI to help with rapid and accurate diagnosis and thus reduce the number of deaths from this disease. AI techniques increase the accuracy of predicting whether or not HF is present compared to traditional methods. Also, in rural areas where there are fewer physicians, it is very important to provide such technologies to aid in diagnosis. Many studies point to new AI-based HF prediction techniques. These technologies relied on different algorithms and datasets of different sizes and types. Each of these technologies has advantages and limitations. Therefore, this paper presents an illustrative study of the most advanced AI methods for HF prediction. This study also included a comparison between the different methods based on the most famous standards.","PeriodicalId":515131,"journal":{"name":"النشرة المعلوماتية في الحاسبات والمعلومات","volume":"269 19‐23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139636266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Medical Image Segmentation Methods: A Survey 深度学习医学图像分割方法:调查
Pub Date : 2024-01-01 DOI: 10.21608/fcihib.2024.189094.1079
مى مختار, هالة عبد الجليل, غادة خوريبه
—Medical image segmentation is essential for detecting and localizing tumors in medical image analysis. Image segmentation involves the identification of anatomical structures in images. Medical image segmentation starts with manual segmentation using Atlas methods, then auto-segmentation, facilitated by deep learning algorithms. Deep learning-based medical image segmentation retains a significant pledge in reducing treatment planning, radiation-related toxicities, and side effects. This study provides a complete overview of deep-learning medical image segmentation models. We review various deep-learning models and architectures applied to medical image segmentation, including fully convolutional networks, U-Net, and attention-based models. This literature review discusses using different loss functions, data augmentation techniques, and transfer learning in deep learning-based medical image segmentation and several types of medical image modality. Evaluation analysis encloses benchmark datasets for human body organs such as the brain, lungs, chest, and liver. Finally, we summarize the challenges and future directions of deep learning for medical image segmentation.
-在医学图像分析中,医学图像分割对于检测和定位肿瘤至关重要。图像分割包括识别图像中的解剖结构。医学图像分割首先是使用 Atlas 方法进行手动分割,然后在深度学习算法的帮助下进行自动分割。基于深度学习的医学图像分割在减少治疗计划、辐射相关毒性和副作用方面具有重要作用。本研究全面概述了深度学习医学影像分割模型。我们回顾了应用于医学图像分割的各种深度学习模型和架构,包括全卷积网络、U-Net 和基于注意力的模型。本文献综述讨论了在基于深度学习的医学图像分割中使用不同的损失函数、数据增强技术和迁移学习,以及几种类型的医学图像模式。评估分析包括大脑、肺部、胸部和肝脏等人体器官的基准数据集。最后,我们总结了深度学习在医学图像分割中面临的挑战和未来发展方向。
{"title":"Deep Learning Medical Image Segmentation Methods: A Survey","authors":"مى مختار, هالة عبد الجليل, غادة خوريبه","doi":"10.21608/fcihib.2024.189094.1079","DOIUrl":"https://doi.org/10.21608/fcihib.2024.189094.1079","url":null,"abstract":"—Medical image segmentation is essential for detecting and localizing tumors in medical image analysis. Image segmentation involves the identification of anatomical structures in images. Medical image segmentation starts with manual segmentation using Atlas methods, then auto-segmentation, facilitated by deep learning algorithms. Deep learning-based medical image segmentation retains a significant pledge in reducing treatment planning, radiation-related toxicities, and side effects. This study provides a complete overview of deep-learning medical image segmentation models. We review various deep-learning models and architectures applied to medical image segmentation, including fully convolutional networks, U-Net, and attention-based models. This literature review discusses using different loss functions, data augmentation techniques, and transfer learning in deep learning-based medical image segmentation and several types of medical image modality. Evaluation analysis encloses benchmark datasets for human body organs such as the brain, lungs, chest, and liver. Finally, we summarize the challenges and future directions of deep learning for medical image segmentation.","PeriodicalId":515131,"journal":{"name":"النشرة المعلوماتية في الحاسبات والمعلومات","volume":"80 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140522343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
النشرة المعلوماتية في الحاسبات والمعلومات
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1