首页 > 最新文献

International Journal of Artificial Intelligence and Robotics Research最新文献

英文 中文
Vision-Guided Grasping Policy Learning from Demonstrations for Robotic Manipulators 从演示中学习机器人机械手的视觉引导抓取策略
Pub Date : 2024-07-05 DOI: 10.1142/s2972335324500066
Lei Jiang, Feiyan Wang, Yueyue Liu
{"title":"Vision-Guided Grasping Policy Learning from Demonstrations for Robotic Manipulators","authors":"Lei Jiang, Feiyan Wang, Yueyue Liu","doi":"10.1142/s2972335324500066","DOIUrl":"https://doi.org/10.1142/s2972335324500066","url":null,"abstract":"","PeriodicalId":516715,"journal":{"name":"International Journal of Artificial Intelligence and Robotics Research","volume":" 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141675279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inaugural Issue of the International Journal of Artificial Intelligence and Robotics Research (IJAIRR): The Emergence of an Interdisciplinary Nexus 国际人工智能与机器人研究期刊》(IJAIRR)创刊号:跨学科联系的出现
Pub Date : 2024-03-01 DOI: 10.1142/s2972335324010026
Yu Sun, Dong Xu, Xiaorui Zhu
For the inaugural issue of the International Journal of Artificial Intelligence and Robotics Research (IJAIRR), I am honored to present an editorial that encapsulates the essence and ambition of this cutting-edge publication. IJAIRR emerges at a time when Artificial Intelligence and Robotics (AIR) are not merely technological novelties but fundamental drivers of progress across various scientific and practical domains. This journal aims to be at the forefront of documenting, analyzing, and guiding the interdisciplinary integration of AI, robotics, and fundamental sciences.
对于《国际人工智能与机器人研究杂志》(IJAIRR)的创刊,我很荣幸能为这份前沿刊物撰写一篇社论,这篇社论概括了这份刊物的精髓和雄心。IJAIRR 的出现正值人工智能和机器人技术(AIR)不仅是技术上的新事物,而且是推动各个科学和实践领域进步的根本动力。本刊旨在成为记录、分析和指导人工智能、机器人和基础科学跨学科整合的前沿刊物。
{"title":"Inaugural Issue of the International Journal of Artificial Intelligence and Robotics Research (IJAIRR): The Emergence of an Interdisciplinary Nexus","authors":"Yu Sun, Dong Xu, Xiaorui Zhu","doi":"10.1142/s2972335324010026","DOIUrl":"https://doi.org/10.1142/s2972335324010026","url":null,"abstract":"For the inaugural issue of the International Journal of Artificial Intelligence and Robotics Research (IJAIRR), I am honored to present an editorial that encapsulates the essence and ambition of this cutting-edge publication. IJAIRR emerges at a time when Artificial Intelligence and Robotics (AIR) are not merely technological novelties but fundamental drivers of progress across various scientific and practical domains. This journal aims to be at the forefront of documenting, analyzing, and guiding the interdisciplinary integration of AI, robotics, and fundamental sciences.","PeriodicalId":516715,"journal":{"name":"International Journal of Artificial Intelligence and Robotics Research","volume":"121 43","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140089312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consolidating Trees of Robotic Plans Generated Using Large Language Models to Improve Reliability 整合使用大型语言模型生成的机器人计划树以提高可靠性
Pub Date : 2024-01-15 DOI: 10.1142/s2972335324500029
Md. Sadman Sakib, Yu Sun
The inherent probabilistic nature of Large Language Models (LLMs) introduces an element of unpredictability, raising concerns about potential discrepancies in their output. This paper introduces an innovative approach aims to generate correct and optimal robotic task plans for diverse real-world demands and scenarios. LLMs have been used to generate task plans, but they are unreliable and may contain wrong, questionable, or high-cost steps. The proposed approach uses LLM to generate a number of task plans as trees and amalgamates them into a graph by removing questionable paths. Then an optimal task tree can be retrieved to circumvent questionable and high-cost nodes, thereby improving planning accuracy and execution efficiency. The approach is further improved by incorporating a large knowledge network. Leveraging GPT-4 further, the high-level task plan is converted into a low-level Planning Domain Definition Language (PDDL) plan executable by a robot. Evaluation results highlight the superior accuracy and efficiency of our approach compared to previous methodologies in the field of task planning.
大型语言模型(LLMs)固有的概率性质引入了不可预测因素,从而引发了对其输出中潜在差异的担忧。本文介绍了一种创新方法,旨在为现实世界中的各种需求和场景生成正确、最优的机器人任务计划。LLM 已被用于生成任务计划,但它们并不可靠,可能包含错误、可疑或高成本的步骤。所提出的方法利用 LLM 生成若干树状任务计划,并通过删除有问题的路径将它们合并成图。然后,可以检索出最优任务树,以规避有问题和高成本的节点,从而提高计划的准确性和执行效率。通过结合大型知识网络,该方法得到了进一步改进。通过进一步利用 GPT-4,高级任务计划被转换为机器人可执行的低级规划域定义语言(PDDL)计划。评估结果表明,与任务规划领域以前的方法相比,我们的方法具有更高的准确性和效率。
{"title":"Consolidating Trees of Robotic Plans Generated Using Large Language Models to Improve Reliability","authors":"Md. Sadman Sakib, Yu Sun","doi":"10.1142/s2972335324500029","DOIUrl":"https://doi.org/10.1142/s2972335324500029","url":null,"abstract":"The inherent probabilistic nature of Large Language Models (LLMs) introduces an element of unpredictability, raising concerns about potential discrepancies in their output. This paper introduces an innovative approach aims to generate correct and optimal robotic task plans for diverse real-world demands and scenarios. LLMs have been used to generate task plans, but they are unreliable and may contain wrong, questionable, or high-cost steps. The proposed approach uses LLM to generate a number of task plans as trees and amalgamates them into a graph by removing questionable paths. Then an optimal task tree can be retrieved to circumvent questionable and high-cost nodes, thereby improving planning accuracy and execution efficiency. The approach is further improved by incorporating a large knowledge network. Leveraging GPT-4 further, the high-level task plan is converted into a low-level Planning Domain Definition Language (PDDL) plan executable by a robot. Evaluation results highlight the superior accuracy and efficiency of our approach compared to previous methodologies in the field of task planning.","PeriodicalId":516715,"journal":{"name":"International Journal of Artificial Intelligence and Robotics Research","volume":" 56","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Artificial Intelligence and Robotics Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1