Stream flow forecasting is a crucial aspect of hydrology and water resource management. This study explores stream flow forecasting using two distinct models: the Soil and Water Assessment Tool (SWAT) and a hybrid M5P model tree. The research specifically targets the daily stream flow predictions at the MH Halli gauge stations, located along the Hemvati River in Karnataka, India. A 14-year dataset spanning from 2003 to 2017 is divided into two subsets for model calibration and validation. The SWAT model's pe
{"title":"Comparison of the performance of SWAT and hybrid M5P tree models in rainfall–runoff simulation","authors":"Shailesh Kumar, K. K. Pandey, Ajay Ahirwar","doi":"10.2166/wh.2024.022","DOIUrl":"https://doi.org/10.2166/wh.2024.022","url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/4/10.2166_wh.2024.022/1/m_jwh-d-23-00022gf01.png?Expires=1717254243&Signature=yqYpqmenhF4Eb0imDtcRqQY847BB21rRaoVKuR4oqObnjVPKLT0Aeqk5t1OqCRVFBngUJ8KCZQQp-~LQdtV4KIjaxSvienKG-BjKjxcdtrtMNY4dvP1-ZAcJ8yTbr9pRPX8fyht9SNQrLYUd79~uBU~ddJ30lfZuMWxeo421mdqVGywP7r1ROiJpcpi~htv2Z31J9pwNKY44YzGbvE9LmangAbzDEHrEdKzVwtstqITjhdXtwHa3IxspX2wemND-g8wf3b2xLSP3xCokrL5bqqgdE6~PqHe4IqE~XtZ3xrYR2FNP1GXipeOtViz0XECy3Zv68ZZTWIssPeyBOVq3LQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwh-d-23-00022gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/4/10.2166_wh.2024.022/1/m_jwh-d-23-00022gf01.png?Expires=1717254243&Signature=yqYpqmenhF4Eb0imDtcRqQY847BB21rRaoVKuR4oqObnjVPKLT0Aeqk5t1OqCRVFBngUJ8KCZQQp-~LQdtV4KIjaxSvienKG-BjKjxcdtrtMNY4dvP1-ZAcJ8yTbr9pRPX8fyht9SNQrLYUd79~uBU~ddJ30lfZuMWxeo421mdqVGywP7r1ROiJpcpi~htv2Z31J9pwNKY44YzGbvE9LmangAbzDEHrEdKzVwtstqITjhdXtwHa3IxspX2wemND-g8wf3b2xLSP3xCokrL5bqqgdE6~PqHe4IqE~XtZ3xrYR2FNP1GXipeOtViz0XECy3Zv68ZZTWIssPeyBOVq3LQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/4/10.2166_wh.2024.022/1/m_jwh-d-23-00022gf01.png?Expires=1717254243&Signature=yqYpqmenhF4Eb0imDtcRqQY847BB21rRaoVKuR4oqObnjVPKLT0Aeqk5t1OqCRVFBngUJ8KCZQQp-~LQdtV4KIjaxSvienKG-BjKjxcdtrtMNY4dvP1-ZAcJ8yTbr9pRPX8fyht9SNQrLYUd79~uBU~ddJ30lfZuMWxeo421mdqVGywP7r1ROiJpcpi~htv2Z31J9pwNKY44YzGbvE9LmangAbzDEHrEdKzVwtstqITjhdXtwHa3IxspX2wemND-g8wf3b2xLSP3xCokrL5bqqgdE6~PqHe4IqE~XtZ3xrYR2FNP1GXipeOtViz0XECy3Zv68ZZTWIssPeyBOVq3LQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwh-d-23-00022gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/4/10.2166_wh.2024.022/1/m_jwh-d-23-00022gf01.png?Expires=1717254243&Signature=yqYpqmenhF4Eb0imDtcRqQY847BB21rRaoVKuR4oqObnjVPKLT0Aeqk5t1OqCRVFBngUJ8KCZQQp-~LQdtV4KIjaxSvienKG-BjKjxcdtrtMNY4dvP1-ZAcJ8yTbr9pRPX8fyht9SNQrLYUd79~uBU~ddJ30lfZuMWxeo421mdqVGywP7r1ROiJpcpi~htv2Z31J9pwNKY44YzGbvE9LmangAbzDEHrEdKzVwtstqITjhdXtwHa3IxspX2wemND-g8wf3b2xLSP3xCokrL5bqqgdE6~PqHe4IqE~XtZ3xrYR2FNP1GXipeOtViz0XECy3Zv68ZZTWIssPeyBOVq3LQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Stream flow forecasting is a crucial aspect of hydrology and water resource management. This study explores stream flow forecasting using two distinct models: the Soil and Water Assessment Tool (SWAT) and a hybrid M5P model tree. The research specifically targets the daily stream flow predictions at the MH Halli gauge stations, located along the Hemvati River in Karnataka, India. A 14-year dataset spanning from 2003 to 2017 is divided into two subsets for model calibration and validation. The SWAT model's pe","PeriodicalId":518003,"journal":{"name":"Journal of Water & Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Amadio, Vasilis Kanakoudis, Dejan Dimkić, Branislava Matić, Primoz Banovec, Ivana Boljat, Emanuela Campione, Barbara Čenčur Curk, Andrea Duro, Darko Kovac, Anastasia Papadopoulou, Argiris Papakonstantinou, Jasmina Lukač Reberski, Matjaž Srša, Stavroula Tsitsifli, Emanuele Romano
View largeDownload slide
View largeDownload slide
Close modal
The available literature on natural hazard risk analysis focused on the implementation of water safety plans (WSPs) is surprisingly quite poor, despite the significant increase in the number and severity of disasters and adverse effects on drinking water supply systems generated by natural hazards. At the same time, WSPs that conveniently account for natural hazards with a comprehensive approach ‘from source to tap’ are still scarce as they typically occur at larger spatial scales and adequate prevention, mi
{"title":"Natural hazard risk analysis in the framework of water safety plans","authors":"Jessica Amadio, Vasilis Kanakoudis, Dejan Dimkić, Branislava Matić, Primoz Banovec, Ivana Boljat, Emanuela Campione, Barbara Čenčur Curk, Andrea Duro, Darko Kovac, Anastasia Papadopoulou, Argiris Papakonstantinou, Jasmina Lukač Reberski, Matjaž Srša, Stavroula Tsitsifli, Emanuele Romano","doi":"10.2166/wh.2024.124","DOIUrl":"https://doi.org/10.2166/wh.2024.124","url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/3/10.2166_wh.2024.124/1/m_jwh-d-23-00124gf01.png?Expires=1714739084&Signature=gBwsucIDYl78JyBrzUrp9Ggswc6I8YqbgKxtNq3hfChgBPMnYPR0Rbc0aPkDEZ5pSV7C64H2iu-Fv5zbS~J~IKgXe3ID7Wco~8EQ0a5-oW9-UFpUAxyKqDtBbqdDsSLwf2T16mCuDj6BcZTjgDdLhMG94v8mfxY6085CQHj9HiKkfd-9M7rN7l2l1USXVX-cKEArJ~SOjEGPMQnSybRl6S-WtqtDDOsSqkan8~2CCFxc-ovvvbt~BcH6JWHBfLn5yvNsJocRKiEUGPpMflkq1uTgd9xPx1mL7~QrsYVho4Lg3euJvlOs1~GDE7NraEZ1af0oVVgx9zwCdHyXovSjqQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwh-d-23-00124gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/3/10.2166_wh.2024.124/1/m_jwh-d-23-00124gf01.png?Expires=1714739084&Signature=gBwsucIDYl78JyBrzUrp9Ggswc6I8YqbgKxtNq3hfChgBPMnYPR0Rbc0aPkDEZ5pSV7C64H2iu-Fv5zbS~J~IKgXe3ID7Wco~8EQ0a5-oW9-UFpUAxyKqDtBbqdDsSLwf2T16mCuDj6BcZTjgDdLhMG94v8mfxY6085CQHj9HiKkfd-9M7rN7l2l1USXVX-cKEArJ~SOjEGPMQnSybRl6S-WtqtDDOsSqkan8~2CCFxc-ovvvbt~BcH6JWHBfLn5yvNsJocRKiEUGPpMflkq1uTgd9xPx1mL7~QrsYVho4Lg3euJvlOs1~GDE7NraEZ1af0oVVgx9zwCdHyXovSjqQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/3/10.2166_wh.2024.124/1/m_jwh-d-23-00124gf01.png?Expires=1714739084&Signature=gBwsucIDYl78JyBrzUrp9Ggswc6I8YqbgKxtNq3hfChgBPMnYPR0Rbc0aPkDEZ5pSV7C64H2iu-Fv5zbS~J~IKgXe3ID7Wco~8EQ0a5-oW9-UFpUAxyKqDtBbqdDsSLwf2T16mCuDj6BcZTjgDdLhMG94v8mfxY6085CQHj9HiKkfd-9M7rN7l2l1USXVX-cKEArJ~SOjEGPMQnSybRl6S-WtqtDDOsSqkan8~2CCFxc-ovvvbt~BcH6JWHBfLn5yvNsJocRKiEUGPpMflkq1uTgd9xPx1mL7~QrsYVho4Lg3euJvlOs1~GDE7NraEZ1af0oVVgx9zwCdHyXovSjqQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwh-d-23-00124gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/3/10.2166_wh.2024.124/1/m_jwh-d-23-00124gf01.png?Expires=1714739084&Signature=gBwsucIDYl78JyBrzUrp9Ggswc6I8YqbgKxtNq3hfChgBPMnYPR0Rbc0aPkDEZ5pSV7C64H2iu-Fv5zbS~J~IKgXe3ID7Wco~8EQ0a5-oW9-UFpUAxyKqDtBbqdDsSLwf2T16mCuDj6BcZTjgDdLhMG94v8mfxY6085CQHj9HiKkfd-9M7rN7l2l1USXVX-cKEArJ~SOjEGPMQnSybRl6S-WtqtDDOsSqkan8~2CCFxc-ovvvbt~BcH6JWHBfLn5yvNsJocRKiEUGPpMflkq1uTgd9xPx1mL7~QrsYVho4Lg3euJvlOs1~GDE7NraEZ1af0oVVgx9zwCdHyXovSjqQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>The available literature on natural hazard risk analysis focused on the implementation of water safety plans (WSPs) is surprisingly quite poor, despite the significant increase in the number and severity of disasters and adverse effects on drinking water supply systems generated by natural hazards. At the same time, WSPs that conveniently account for natural hazards with a comprehensive approach ‘from source to tap’ are still scarce as they typically occur at larger spatial scales and adequate prevention, mi","PeriodicalId":518003,"journal":{"name":"Journal of Water & Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louisiane Farias Batista, Thiago Shinaigger Rocha do Nascimento, Igor Costa, Edinelson Saldanha Correa, Christiane do Nascimento Monte
The decline in the quality of water resources in the Amazon is very rapid in cities suffering from unplanned urban growth. The region has two defined seasons, winter (wet) and summer (dry), which directly affect the behavior of contaminants in aquatic ecosystems. The aim of this study was to assess the ecological and human health risks associated with the use of the watershed. In addition, an ecological index was proposed: the Quality Index for Aquatic Life, for the risk of contaminants to aquatic life. Sampling was carried out at six points in the Juá watershed. Physicochemical parameters, major anions, metals and total phosphorus were analyzed at both stations between 2020 and 2021. The highest concentrations of contaminants were found in the rainy season, due to the washing away of the banks. In this sense, Cl presented a concentration more than 307 times higher than that permitted by Brazilian legislation (wet). The ecological index showed that the watershed has a high risk of metals such as Cr III and Cr VI for the biota. The human health risk analysis showed a low risk; however, the lack of basic sanitation in the city indicates that monitoring of urban water resources is necessary.
{"title":"Change in water quality in an Amazonian microbasin: ecological and human health implications","authors":"Louisiane Farias Batista, Thiago Shinaigger Rocha do Nascimento, Igor Costa, Edinelson Saldanha Correa, Christiane do Nascimento Monte","doi":"10.2166/wh.2024.286","DOIUrl":"https://doi.org/10.2166/wh.2024.286","url":null,"abstract":"<p>The decline in the quality of water resources in the Amazon is very rapid in cities suffering from unplanned urban growth. The region has two defined seasons, winter (wet) and summer (dry), which directly affect the behavior of contaminants in aquatic ecosystems. The aim of this study was to assess the ecological and human health risks associated with the use of the watershed. In addition, an ecological index was proposed: the Quality Index for Aquatic Life, for the risk of contaminants to aquatic life. Sampling was carried out at six points in the Juá watershed. Physicochemical parameters, major anions, metals and total phosphorus were analyzed at both stations between 2020 and 2021. The highest concentrations of contaminants were found in the rainy season, due to the washing away of the banks. In this sense, Cl presented a concentration more than 307 times higher than that permitted by Brazilian legislation (wet). The ecological index showed that the watershed has a high risk of metals such as Cr III and Cr VI for the biota. The human health risk analysis showed a low risk; however, the lack of basic sanitation in the city indicates that monitoring of urban water resources is necessary.</p>","PeriodicalId":518003,"journal":{"name":"Journal of Water & Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in s
{"title":"Virucidal efficacy of hypochlorous acid water for aqueous phase and atomization against SARS-CoV-2","authors":"Makoto Kubo, Ryotaro Eda, Shotaro Maehana, Hiroshi Fuketa, Norihiro Shinkai, Naohisa Kawamura, Hidero Kitasato, Hideaki Hanaki","doi":"10.2166/wh.2024.348","DOIUrl":"https://doi.org/10.2166/wh.2024.348","url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/3/10.2166_wh.2024.348/1/m_jwh-d-23-00348gf01.png?Expires=1714744915&Signature=2b92V63jse9OiyGI6yc219mHK2v7JmgIbl4an3h8GnflcUtEn7LWZjPOrb9x-nUNVG530GL4vFL8hAB0fbqjTaSU~Fzmck4DLM9mkH19bsodFuMIfGw-Tv0BNHKoD3uWb~YJBij~IB1DyawHMPbp1vQ4Z00jdTRAJu8wcPQX1nKQ5rQ2HhM6Eeh30-jOvCOlmpBzfPn~MGVzFDOvqHTiR2zNRfXxYNpfqCl94DfI6kHvraxXx-ntFtr9TTEoJLgZ7sk6k0TEZDNitzNWuNla3hbu9Y7KtvOvAxDE1MrCmrZcQVHoJfDyhdj9O8DXC~Rk2iHXt~lhMD-gOHKgflAOhA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwh-d-23-00348gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/3/10.2166_wh.2024.348/1/m_jwh-d-23-00348gf01.png?Expires=1714744915&Signature=2b92V63jse9OiyGI6yc219mHK2v7JmgIbl4an3h8GnflcUtEn7LWZjPOrb9x-nUNVG530GL4vFL8hAB0fbqjTaSU~Fzmck4DLM9mkH19bsodFuMIfGw-Tv0BNHKoD3uWb~YJBij~IB1DyawHMPbp1vQ4Z00jdTRAJu8wcPQX1nKQ5rQ2HhM6Eeh30-jOvCOlmpBzfPn~MGVzFDOvqHTiR2zNRfXxYNpfqCl94DfI6kHvraxXx-ntFtr9TTEoJLgZ7sk6k0TEZDNitzNWuNla3hbu9Y7KtvOvAxDE1MrCmrZcQVHoJfDyhdj9O8DXC~Rk2iHXt~lhMD-gOHKgflAOhA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/3/10.2166_wh.2024.348/1/m_jwh-d-23-00348gf01.png?Expires=1714744915&Signature=2b92V63jse9OiyGI6yc219mHK2v7JmgIbl4an3h8GnflcUtEn7LWZjPOrb9x-nUNVG530GL4vFL8hAB0fbqjTaSU~Fzmck4DLM9mkH19bsodFuMIfGw-Tv0BNHKoD3uWb~YJBij~IB1DyawHMPbp1vQ4Z00jdTRAJu8wcPQX1nKQ5rQ2HhM6Eeh30-jOvCOlmpBzfPn~MGVzFDOvqHTiR2zNRfXxYNpfqCl94DfI6kHvraxXx-ntFtr9TTEoJLgZ7sk6k0TEZDNitzNWuNla3hbu9Y7KtvOvAxDE1MrCmrZcQVHoJfDyhdj9O8DXC~Rk2iHXt~lhMD-gOHKgflAOhA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwh-d-23-00348gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwh/22/3/10.2166_wh.2024.348/1/m_jwh-d-23-00348gf01.png?Expires=1714744915&Signature=2b92V63jse9OiyGI6yc219mHK2v7JmgIbl4an3h8GnflcUtEn7LWZjPOrb9x-nUNVG530GL4vFL8hAB0fbqjTaSU~Fzmck4DLM9mkH19bsodFuMIfGw-Tv0BNHKoD3uWb~YJBij~IB1DyawHMPbp1vQ4Z00jdTRAJu8wcPQX1nKQ5rQ2HhM6Eeh30-jOvCOlmpBzfPn~MGVzFDOvqHTiR2zNRfXxYNpfqCl94DfI6kHvraxXx-ntFtr9TTEoJLgZ7sk6k0TEZDNitzNWuNla3hbu9Y7KtvOvAxDE1MrCmrZcQVHoJfDyhdj9O8DXC~Rk2iHXt~lhMD-gOHKgflAOhA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in s","PeriodicalId":518003,"journal":{"name":"Journal of Water & Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}