首页 > 最新文献

Intelligent computing (Washington, D.C.)最新文献

英文 中文
Intelligent Beam Optimization for Light-Sheet Fluorescence Microscopy through Deep Learning. 通过深度学习实现光片荧光显微镜的智能光束优化
Pub Date : 2024-01-01 Epub Date: 2024-07-04 DOI: 10.34133/icomputing.0095
Chen Li, Mani Ratnam Rai, Yuheng Cai, H Troy Ghashghaei, Alon Greenbaum

Light-sheet fluorescence microscopy (LSFM) provides the benefit of optical sectioning coupled with rapid acquisition times, enabling high-resolution 3-dimensional imaging of large tissue-cleared samples. Inherent to LSFM, the quality of the imaging heavily relies on the characteristics of the illumination beam, which only illuminates a thin section of the sample. Therefore, substantial efforts are dedicated to identifying slender, nondiffracting beam profiles that yield uniform and high-contrast images. An ongoing debate concerns the identification of optimal illumination beams for different samples: Gaussian, Bessel, Airy patterns, and/or others. However, comparisons among different beam profiles are challenging as their optimization objectives are often different. Given that our large imaging datasets (approximately 0.5 TB of images per sample) are already analyzed using deep learning models, we envisioned a different approach to the problem by designing an illumination beam tailored to boost the performance of the deep learning model. We hypothesized that integrating the physical LSFM illumination model (after passing it through a variable phase mask) into the training of a cell detection network would achieve this goal. Here, we report that joint optimization continuously updates the phase mask and results in improved image quality for better cell detection. The efficacy of our method is demonstrated through both simulations and experiments that reveal substantial enhancements in imaging quality compared to the traditional Gaussian light sheet. We discuss how designing microscopy systems through a computational approach provides novel insights for advancing optical design that relies on deep learning models for the analysis of imaging datasets.

光片荧光显微镜(LSFM)具有光学切片和快速采集的优点,可对大型组织清除样本进行高分辨率三维成像。LSFM 本身的成像质量在很大程度上取决于照明光束的特性,因为照明光束只能照亮样品的薄片。因此,大量工作致力于确定细长、无衍射的光束轮廓,以获得均匀、高对比度的图像。针对不同样品的最佳照明光束的确定一直是一个争论不休的问题:高斯光束、贝塞尔光束、艾里光束和/或其他光束。然而,不同光束轮廓之间的比较具有挑战性,因为它们的优化目标往往不同。鉴于我们的大型成像数据集(每个样本约有 0.5 TB 图像)已经使用深度学习模型进行了分析,我们设想用一种不同的方法来解决这个问题,即设计一种量身定制的照明光束,以提高深度学习模型的性能。我们假设,将物理 LSFM 照明模型(通过可变相位掩码后)整合到细胞检测网络的训练中,就能实现这一目标。在此,我们报告了联合优化不断更新相位掩码,从而提高了图像质量,实现了更好的细胞检测。我们通过模拟和实验证明了这种方法的功效,与传统的高斯光片相比,我们的方法大大提高了成像质量。我们讨论了如何通过计算方法设计显微镜系统,为推进依赖深度学习模型分析成像数据集的光学设计提供了新的见解。
{"title":"Intelligent Beam Optimization for Light-Sheet Fluorescence Microscopy through Deep Learning.","authors":"Chen Li, Mani Ratnam Rai, Yuheng Cai, H Troy Ghashghaei, Alon Greenbaum","doi":"10.34133/icomputing.0095","DOIUrl":"10.34133/icomputing.0095","url":null,"abstract":"<p><p>Light-sheet fluorescence microscopy (LSFM) provides the benefit of optical sectioning coupled with rapid acquisition times, enabling high-resolution 3-dimensional imaging of large tissue-cleared samples. Inherent to LSFM, the quality of the imaging heavily relies on the characteristics of the illumination beam, which only illuminates a thin section of the sample. Therefore, substantial efforts are dedicated to identifying slender, nondiffracting beam profiles that yield uniform and high-contrast images. An ongoing debate concerns the identification of optimal illumination beams for different samples: Gaussian, Bessel, Airy patterns, and/or others. However, comparisons among different beam profiles are challenging as their optimization objectives are often different. Given that our large imaging datasets (approximately 0.5 TB of images per sample) are already analyzed using deep learning models, we envisioned a different approach to the problem by designing an illumination beam tailored to boost the performance of the deep learning model. We hypothesized that integrating the physical LSFM illumination model (after passing it through a variable phase mask) into the training of a cell detection network would achieve this goal. Here, we report that joint optimization continuously updates the phase mask and results in improved image quality for better cell detection. The efficacy of our method is demonstrated through both simulations and experiments that reveal substantial enhancements in imaging quality compared to the traditional Gaussian light sheet. We discuss how designing microscopy systems through a computational approach provides novel insights for advancing optical design that relies on deep learning models for the analysis of imaging datasets.</p>","PeriodicalId":520006,"journal":{"name":"Intelligent computing (Washington, D.C.)","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Intelligent computing (Washington, D.C.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1