Pub Date : 2025-09-01Epub Date: 2025-08-26DOI: 10.3390/plasma8030034
Michael Okebiorun, Dalton Miller, Kenneth A Cornell, Jim Browning
The study evaluates the efficacy of an image-guided CAP treatment method with a plasma device capable of rapid biofilm removal from chicken tissue. The plasma treatment operating configuration includes a gas mixture of Argon and H2O at a flowrate of 1.5 lpm. An X-Y stage was used to move the chicken sample below the stationary plasma scalpel at a speed of 0.1 mm/s. The discharge voltage and current were maintained between 3.2 and 3.7 kV (AC 20 kHz), and at 3 mA, respectively. The electrode gap and sample distance were set to 0.6 mm and 4 mm. This configuration facilitated effective biofilm removal, as confirmed by CFU analysis and 3D microscopic analysis showing a >99% reduction in biofilm post treatment with an etch rate of 2.2-5.8 μm/s and an impact width of up to 300 μm. The plasma scalpel electrode temperature reached 94.7 °C, while the targeted biofilm area was heated to 36.3 °C, suggesting non-thermal biofilm disruption. Three-dimensional microscopic analysis revealed biofilm thickness on chicken tissues ranging from 20 to 180 μm, comparable to biofilm loads on mammalian tissues. In conclusion, the study highlights the potential of CAP devices as a promising solution for biofilm debridement.
{"title":"Trypan Blue Image-Guided Removal of Surface-Based Bacterial Biofilms from Chicken Tissue Using Cold Atmospheric Pressure Plasma.","authors":"Michael Okebiorun, Dalton Miller, Kenneth A Cornell, Jim Browning","doi":"10.3390/plasma8030034","DOIUrl":"10.3390/plasma8030034","url":null,"abstract":"<p><p>The study evaluates the efficacy of an image-guided CAP treatment method with a plasma device capable of rapid biofilm removal from chicken tissue. The plasma treatment operating configuration includes a gas mixture of Argon and H<sub>2</sub>O at a flowrate of 1.5 lpm. An X-Y stage was used to move the chicken sample below the stationary plasma scalpel at a speed of 0.1 mm/s. The discharge voltage and current were maintained between 3.2 and 3.7 kV (AC 20 kHz), and at 3 mA, respectively. The electrode gap and sample distance were set to 0.6 mm and 4 mm. This configuration facilitated effective biofilm removal, as confirmed by CFU analysis and 3D microscopic analysis showing a >99% reduction in biofilm post treatment with an etch rate of 2.2-5.8 μm/s and an impact width of up to 300 μm. The plasma scalpel electrode temperature reached 94.7 °C, while the targeted biofilm area was heated to 36.3 °C, suggesting non-thermal biofilm disruption. Three-dimensional microscopic analysis revealed biofilm thickness on chicken tissues ranging from 20 to 180 μm, comparable to biofilm loads on mammalian tissues. In conclusion, the study highlights the potential of CAP devices as a promising solution for biofilm debridement.</p>","PeriodicalId":520091,"journal":{"name":"Plasma (Basel, Switzerland)","volume":"8 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12571233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145411347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-27DOI: 10.3390/plasma7020022
Jonathan E Thomas, Katharina Stapelmann
Cold atmospheric plasmas (CAPs) within recent years have shown great promise in the field of plasma medicine, encompassing a variety of treatments from wound healing to the treatment of cancerous tumors. For each subsequent treatment, a different application of CAPs has been postulated and attempted to best treat the target for the most effective results. These treatments have varied through the implementation of control parameters such as applied settings, electrode geometries, gas flow, and the duration of the treatment. However, with such an extensive number of variables to consider, scientists and engineers have sought a means to accurately control CAPs for the best-desired effects in medical applications. This paper seeks to investigate and characterize the historical precedent for the use of plasma control mechanisms within the field of plasma medicine. Current control strategies, plasma parameters, and control schemes will be extrapolated through recent developments and successes to gain better insight into the future of the field and the challenges that are still present in the overall implementation of such devices. Proposed approaches, such as data-driven machine learning, and the use of closed-loop feedback controls, will be showcased as the next steps toward application.
{"title":"Plasma Control: A Review of Developments and Applications of Plasma Medicine Control Mechanisms.","authors":"Jonathan E Thomas, Katharina Stapelmann","doi":"10.3390/plasma7020022","DOIUrl":"10.3390/plasma7020022","url":null,"abstract":"<p><p>Cold atmospheric plasmas (CAPs) within recent years have shown great promise in the field of plasma medicine, encompassing a variety of treatments from wound healing to the treatment of cancerous tumors. For each subsequent treatment, a different application of CAPs has been postulated and attempted to best treat the target for the most effective results. These treatments have varied through the implementation of control parameters such as applied settings, electrode geometries, gas flow, and the duration of the treatment. However, with such an extensive number of variables to consider, scientists and engineers have sought a means to accurately control CAPs for the best-desired effects in medical applications. This paper seeks to investigate and characterize the historical precedent for the use of plasma control mechanisms within the field of plasma medicine. Current control strategies, plasma parameters, and control schemes will be extrapolated through recent developments and successes to gain better insight into the future of the field and the challenges that are still present in the overall implementation of such devices. Proposed approaches, such as data-driven machine learning, and the use of closed-loop feedback controls, will be showcased as the next steps toward application.</p>","PeriodicalId":520091,"journal":{"name":"Plasma (Basel, Switzerland)","volume":"7 2","pages":"386-426"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}