首页 > 最新文献

Systems & control transactions最新文献

英文 中文
Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression. 符号回归学习可解释PDE解的适应度标准选择。
Pub Date : 2025-07-01 Epub Date: 2025-06-27 DOI: 10.69997/sct.199083
Benjamin G Cohen, Burcu Beykal, George M Bollas

Physics-Informed Symbolic Regression (PISR) offers a pathway to discover human-interpretable solutions to partial differential equations (PDEs). This work investigates three fitness metrics within a PISR framework: PDE fitness, Bayesian Information Criterion (BIC), and a fitness metric proportional to the probability of a model given the data. Through experiments with Laplace's equation, Burgers' equation, and a nonlinear wave equation, we demonstrate that incorporating information theoretic criteria like BIC can yield higher fidelity models while maintaining interpretability. Our results show that BIC-based PISR achieved the best performance, identifying an exact solution to Laplace's equation and finding solutions with R 2 -values of 0.998 for Burgers' equation and 0.957 for the nonlinear wave equation. The inclusion of the Bayes D-optimality criterion in estimating model probability strongly constrained solution complexity, limiting models to 3-4 parameters and reducing accuracy. These findings suggest that a two-stage approach-using simpler complexity metrics during initial solution discovery followed by a post-hoc identifiability analysis may be optimal for discovering interpretable and mathematically identifiable PDE solutions.

物理信息符号回归(PISR)为发现偏微分方程(PDEs)的人类可解释解提供了一条途径。这项工作研究了PISR框架中的三个适应度指标:PDE适应度,贝叶斯信息标准(BIC),以及与给定数据的模型概率成比例的适应度指标。通过拉普拉斯方程、Burgers方程和非线性波动方程的实验,我们证明了结合BIC等信息理论标准可以在保持可解释性的同时产生更高保真度的模型。研究结果表明,基于bic的PISR算法获得了最佳的性能,能够识别出拉普拉斯方程的精确解,并能求出Burgers方程和非线性波动方程的r2值分别为0.998和0.957的解。在估计模型概率时加入贝叶斯d -最优准则强烈约束了求解复杂度,将模型限制在3-4个参数范围内,降低了精度。这些发现表明,两阶段方法——在初始解决方案发现期间使用更简单的复杂性度量,然后进行事后可识别性分析——可能是发现可解释和数学上可识别的PDE解决方案的最佳方法。
{"title":"Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression.","authors":"Benjamin G Cohen, Burcu Beykal, George M Bollas","doi":"10.69997/sct.199083","DOIUrl":"10.69997/sct.199083","url":null,"abstract":"<p><p>Physics-Informed Symbolic Regression (PISR) offers a pathway to discover human-interpretable solutions to partial differential equations (PDEs). This work investigates three fitness metrics within a PISR framework: PDE fitness, Bayesian Information Criterion (BIC), and a fitness metric proportional to the probability of a model given the data. Through experiments with Laplace's equation, Burgers' equation, and a nonlinear wave equation, we demonstrate that incorporating information theoretic criteria like BIC can yield higher fidelity models while maintaining interpretability. Our results show that BIC-based PISR achieved the best performance, identifying an exact solution to Laplace's equation and finding solutions with <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> </mrow> </math> -values of 0.998 for Burgers' equation and 0.957 for the nonlinear wave equation. The inclusion of the Bayes D-optimality criterion in estimating model probability strongly constrained solution complexity, limiting models to 3-4 parameters and reducing accuracy. These findings suggest that a two-stage approach-using simpler complexity metrics during initial solution discovery followed by a post-hoc identifiability analysis may be optimal for discovering interpretable and mathematically identifiable PDE solutions.</p>","PeriodicalId":520222,"journal":{"name":"Systems & control transactions","volume":"4 ","pages":"1837-1842"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145067516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-Driven Chance-Constrained Mixed Integer Nonlinear Bi-level Optimisation Via Copulas: Application To Integrated Planning And Scheduling Problems. 基于copula的数据驱动机会约束混合整数非线性双级优化:在综合计划和调度问题中的应用。
Pub Date : 2025-01-01 Epub Date: 2025-06-27 DOI: 10.69997/sct.169891
Syu-Ning Johnn, Hasan Nikkhah, Meng-Lin Tsai, Styliani Avraamidou, Burcu Beykal, Vassilis M Charitopoulos

Planning and scheduling are integral components of process supply chains. The presence of data correlation, particularly multivariate demand data dependency, can pose significant challenges to the decision-making process. This necessitates the consideration of dependency structures inherent in the underlying data to generate good-quality, feasible solutions to optimisation problems such as planning and scheduling. This work proposes a chance-constrained optimisation framework integrated with copulas, a non-parametric data estimation technique to forecast uncertain demand levels in accordance with specified risk thresholds in the context of a planning and scheduling problem. We focus on the integrated planning and scheduling problem following a bi-level optimisation formulation. The estimated demand forecasts are subsequently utilised within the Data-driven Optimisation of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework to solve the integrated optimisation problem, and derive decisions with guaranteed demand satisfaction rates. Computational experiments demonstrate that our proposed copula-based chance-constrained optimisation framework can incorporate demand correlation and achieve higher joint demand satisfaction rate, lower total costs with higher efficiency.

计划和调度是过程供应链的组成部分。数据相关性的存在,特别是多变量需求数据依赖性,可能对决策过程构成重大挑战。这需要考虑底层数据中固有的依赖结构,以生成高质量的、可行的解决方案来优化问题,如计划和调度。这项工作提出了一个机会约束优化框架与copulas集成,copulas是一种非参数数据估计技术,用于根据规划和调度问题中指定的风险阈值预测不确定的需求水平。我们关注的是综合规划和调度问题,遵循双层优化公式。估计的需求预测随后在双级混合整数非线性问题(DOMINO)框架的数据驱动优化中使用,以解决集成优化问题,并得出具有保证需求满意度的决策。计算实验表明,本文提出的基于copula的机会约束优化框架能够有效地结合需求相关性,实现更高的联合需求满意率、更低的总成本和更高的效率。
{"title":"Data-Driven Chance-Constrained Mixed Integer Nonlinear Bi-level Optimisation Via Copulas: Application To Integrated Planning And Scheduling Problems.","authors":"Syu-Ning Johnn, Hasan Nikkhah, Meng-Lin Tsai, Styliani Avraamidou, Burcu Beykal, Vassilis M Charitopoulos","doi":"10.69997/sct.169891","DOIUrl":"10.69997/sct.169891","url":null,"abstract":"<p><p>Planning and scheduling are integral components of process supply chains. The presence of data correlation, particularly multivariate demand data dependency, can pose significant challenges to the decision-making process. This necessitates the consideration of dependency structures inherent in the underlying data to generate good-quality, feasible solutions to optimisation problems such as planning and scheduling. This work proposes a chance-constrained optimisation framework integrated with copulas, a non-parametric data estimation technique to forecast uncertain demand levels in accordance with specified risk thresholds in the context of a planning and scheduling problem. We focus on the integrated planning and scheduling problem following a bi-level optimisation formulation. The estimated demand forecasts are subsequently utilised within the Data-driven Optimisation of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework to solve the integrated optimisation problem, and derive decisions with guaranteed demand satisfaction rates. Computational experiments demonstrate that our proposed copula-based chance-constrained optimisation framework can incorporate demand correlation and achieve higher joint demand satisfaction rate, lower total costs with higher efficiency.</p>","PeriodicalId":520222,"journal":{"name":"Systems & control transactions","volume":"4 ","pages":"117-122"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145067542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Then to Now and Beyond: Exploring How Machine Learning Shapes Process Design Problems. 从过去到现在,再到未来:探索机器学习如何塑造流程设计问题。
Pub Date : 2024-01-01 Epub Date: 2024-07-10 DOI: 10.69997/sct.116002
Burcu Beykal

Following the discovery of the least squares method in 1805 by Legendre and later in 1809 by Gauss, surrogate modeling and machine learning have come a long way. From identifying patterns and trends in process data to predictive modeling, optimization, fault detection, reaction network discovery, and process operations, machine learning became an integral part of all aspects of process design and process systems engineering. This is enabled, at the same time necessitated, by the vast amounts of data that are readily available from processes, increased digitalization, automation, increasing computation power, and simulation software that can model complex phenomena that span over several temporal and spatial scales. Although this paper is not a comprehensive review, it gives an overview of the recent history of machine learning models that we use every day and how they shaped process design problems from the recent advances to the exploration of their prospects.

继勒让德尔(Legendre)于 1805 年、高斯(Gauss)于 1809 年发现最小二乘法之后,代用建模和机器学习取得了长足的进步。从识别工艺数据中的模式和趋势到预测建模、优化、故障检测、反应网络发现和工艺操作,机器学习已成为工艺设计和工艺系统工程各个方面不可或缺的一部分。这得益于从工艺中随时可获得的大量数据、数字化程度的提高、自动化程度的提高、计算能力的增强以及可对跨越多个时间和空间尺度的复杂现象进行建模的仿真软件。虽然本文不是一篇全面的综述,但它概述了我们日常使用的机器学习模型的近代史,以及这些模型是如何从最近的进步到对其前景的探索中塑造工艺设计问题的。
{"title":"From Then to Now and Beyond: Exploring How Machine Learning Shapes Process Design Problems.","authors":"Burcu Beykal","doi":"10.69997/sct.116002","DOIUrl":"10.69997/sct.116002","url":null,"abstract":"<p><p>Following the discovery of the least squares method in 1805 by Legendre and later in 1809 by Gauss, surrogate modeling and machine learning have come a long way. From identifying patterns and trends in process data to predictive modeling, optimization, fault detection, reaction network discovery, and process operations, machine learning became an integral part of all aspects of process design and process systems engineering. This is enabled, at the same time necessitated, by the vast amounts of data that are readily available from processes, increased digitalization, automation, increasing computation power, and simulation software that can model complex phenomena that span over several temporal and spatial scales. Although this paper is not a comprehensive review, it gives an overview of the recent history of machine learning models that we use every day and how they shaped process design problems from the recent advances to the exploration of their prospects.</p>","PeriodicalId":520222,"journal":{"name":"Systems & control transactions","volume":"3 ","pages":"16-21"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Systems & control transactions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1