首页 > 最新文献

APL machine learning最新文献

英文 中文
Automatic forward model parameterization with Bayesian inference of conformational populations. 构象种群贝叶斯推理的自动正演模型参数化。
Pub Date : 2026-03-01 Epub Date: 2026-01-08 DOI: 10.1063/5.0287423
Robert M Raddi, Tim Marshall, Vincent A Voelz
<p><p>To quantify how well theoretical predictions of structural ensembles agree with experimental measurements, we depend on the accuracy of forward models (FMs). These models are computational frameworks that generate observable quantities from molecular configurations based on empirical relationships linking specific molecular properties to experimental measurements. Bayesian Inference of Conformational Populations (BICePs) is a reweighting algorithm that reconciles simulated ensembles with ensemble-averaged experimental observations, even when such observations are sparse and/or noisy. This is achieved by sampling the posterior distribution of conformational populations under experimental restraints as well as sampling the posterior distribution of uncertainties due to random and systematic error. In this study, we enhance the algorithm for the refinement of empirical FM parameters. We introduce and evaluate two novel methods for optimizing FM parameters. The first method treats FM parameters as nuisance parameters, integrating over them in the full posterior distribution. The second method employs variational minimization of a quantity called the BICePs score that reports the free energy of "turning on" the experimental restraints. This technique, coupled with improved likelihood functions for handling experimental outliers, facilitates force field validation and optimization, as illustrated in recent studies [R. M. Raddi <i>et al.</i>, J. Chem. Theory Comput. <b>21</b>, 5880-5889 (2025) and R. M. Raddi and V. A. Voelz, "Automated optimization of force field parameters against ensemble-averaged measurements with Bayesian inference of conformational populations," arXiv:2402.11169 (2024)]. Using this approach, we refine parameters that modulate the Karplus relation, crucial for accurate predictions of <i>J</i>-coupling constants based on dihedral angles (<i>ϕ</i>) between interacting nuclei. We validate this approach first with a toy model system and then for human ubiquitin, predicting six sets of Karplus parameters for <math> <mmultiscripts><mrow><mi>J</mi></mrow> <mrow> <msup><mrow><mi>H</mi></mrow> <mrow><mi>N</mi></mrow> </msup> <msup><mrow><mi>H</mi></mrow> <mrow><mi>α</mi></mrow> </msup> </mrow> <none></none> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </math> , <math> <mmultiscripts><mrow><mi>J</mi></mrow> <mrow> <msup><mrow><mi>H</mi></mrow> <mrow><mi>α</mi></mrow> </msup> <msup><mrow><mi>C</mi></mrow> <mrow><mo>'</mo></mrow> </msup> </mrow> <none></none> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </math> , <math> <mmultiscripts><mrow><mi>J</mi></mrow> <mrow> <msup><mrow><mi>H</mi></mrow> <mrow><mi>N</mi></mrow> </msup> <msup><mrow><mi>C</mi></mrow> <mrow><mi>β</mi></mrow> </msup> </mrow> <none></none> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </math> , <math> <mmultiscripts><mrow><mi>J</mi></mrow> <mrow> <msup><mrow
为了量化结构整体的理论预测与实验测量的一致程度,我们依赖于正演模型(FMs)的准确性。这些模型是计算框架,基于将特定分子性质与实验测量联系起来的经验关系,从分子构型中产生可观察到的数量。构象种群的贝叶斯推断(BICePs)是一种重新加权算法,它将模拟的集成与集成平均的实验观测相协调,即使这些观测是稀疏的和/或有噪声的。这是通过在实验约束下对构象总体的后验分布进行抽样,以及对随机和系统误差引起的不确定性的后验分布进行抽样来实现的。在本研究中,我们对经验调频参数的细化算法进行了改进。介绍并评价了两种优化调频参数的新方法。第一种方法将FM参数作为干扰参数,在完全后验分布中对它们进行积分。第二种方法是对BICePs分数进行变分最小化,该分数报告了“开启”实验约束的自由能。该技术与改进的似然函数一起用于处理实验异常值,有助于力场验证和优化,如最近的研究所示[R]。M. Raddi et al., J. Chem。李晓东,李晓东,李晓东,等。基于Bayesian推理的力场参数自动优化[j].计算机工程学报,2013,33(4):589 - 589(2025)。使用这种方法,我们改进了调节Karplus关系的参数,这对于基于相互作用原子核之间的二面角(φ)准确预测j耦合常数至关重要。我们首先用玩具模型系统验证了这一方法,然后对人类泛素进行了验证,预测了jh N H α 3、jh α C ' 3、jh N C β 3、jh N C ' 3、jc ' C β 3和jc ' C ' 3的六组Karplus参数。最后,我们证明了我们的框架自然地将优化推广到任何可微FM,例如那些由神经网络构建的FM。这种方法为训练和验证基于神经网络的FMs提供了一个有前途的方向。
{"title":"Automatic forward model parameterization with Bayesian inference of conformational populations.","authors":"Robert M Raddi, Tim Marshall, Vincent A Voelz","doi":"10.1063/5.0287423","DOIUrl":"10.1063/5.0287423","url":null,"abstract":"&lt;p&gt;&lt;p&gt;To quantify how well theoretical predictions of structural ensembles agree with experimental measurements, we depend on the accuracy of forward models (FMs). These models are computational frameworks that generate observable quantities from molecular configurations based on empirical relationships linking specific molecular properties to experimental measurements. Bayesian Inference of Conformational Populations (BICePs) is a reweighting algorithm that reconciles simulated ensembles with ensemble-averaged experimental observations, even when such observations are sparse and/or noisy. This is achieved by sampling the posterior distribution of conformational populations under experimental restraints as well as sampling the posterior distribution of uncertainties due to random and systematic error. In this study, we enhance the algorithm for the refinement of empirical FM parameters. We introduce and evaluate two novel methods for optimizing FM parameters. The first method treats FM parameters as nuisance parameters, integrating over them in the full posterior distribution. The second method employs variational minimization of a quantity called the BICePs score that reports the free energy of \"turning on\" the experimental restraints. This technique, coupled with improved likelihood functions for handling experimental outliers, facilitates force field validation and optimization, as illustrated in recent studies [R. M. Raddi &lt;i&gt;et al.&lt;/i&gt;, J. Chem. Theory Comput. &lt;b&gt;21&lt;/b&gt;, 5880-5889 (2025) and R. M. Raddi and V. A. Voelz, \"Automated optimization of force field parameters against ensemble-averaged measurements with Bayesian inference of conformational populations,\" arXiv:2402.11169 (2024)]. Using this approach, we refine parameters that modulate the Karplus relation, crucial for accurate predictions of &lt;i&gt;J&lt;/i&gt;-coupling constants based on dihedral angles (&lt;i&gt;ϕ&lt;/i&gt;) between interacting nuclei. We validate this approach first with a toy model system and then for human ubiquitin, predicting six sets of Karplus parameters for &lt;math&gt; &lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt; &lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt; &lt;/msup&gt; &lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt; &lt;/msup&gt; &lt;/mrow&gt; &lt;none&gt;&lt;/none&gt; &lt;mprescripts&gt;&lt;/mprescripts&gt; &lt;none&gt;&lt;/none&gt; &lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt; &lt;/mmultiscripts&gt; &lt;/math&gt; , &lt;math&gt; &lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt; &lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt; &lt;/msup&gt; &lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mo&gt;'&lt;/mo&gt;&lt;/mrow&gt; &lt;/msup&gt; &lt;/mrow&gt; &lt;none&gt;&lt;/none&gt; &lt;mprescripts&gt;&lt;/mprescripts&gt; &lt;none&gt;&lt;/none&gt; &lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt; &lt;/mmultiscripts&gt; &lt;/math&gt; , &lt;math&gt; &lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt; &lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt; &lt;/msup&gt; &lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt; &lt;/msup&gt; &lt;/mrow&gt; &lt;none&gt;&lt;/none&gt; &lt;mprescripts&gt;&lt;/mprescripts&gt; &lt;none&gt;&lt;/none&gt; &lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt; &lt;/mmultiscripts&gt; &lt;/math&gt; , &lt;math&gt; &lt;mmultiscripts&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt; &lt;msup&gt;&lt;mrow","PeriodicalId":520238,"journal":{"name":"APL machine learning","volume":"4 1","pages":"016102"},"PeriodicalIF":0.0,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12818351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146021182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AutoSAS: A new human-aside-the-loop paradigm for automated SAS fitting for high throughput and autonomous experimentation. AutoSAS:用于高通量和自主实验的自动化SAS装配的新人工旁路范例。
Pub Date : 2025-09-01 Epub Date: 2025-08-12 DOI: 10.1063/5.0271073
Duncan R Sutherland, Rachel Ford, Yun Liu, Tyler B Martin, Peter A Beaucage

The advancement of artificial-intelligence driven autonomous experiments demands physics-based modeling and decision-making processes, not only to improve the accuracy of the experimental trajectory but also to increase trust by allowing transparent human-machine collaboration. High-quality structural characterization techniques (e.g., x ray, neutron, or static light scattering) are a particularly relevant example of this need: they provide invaluable information but are challenging to analyze without expert oversight. Here, we introduce AutoSAS, a novel framework for human-aside-the-loop automated data classification. AutoSAS leverages human-defined candidate models, high-throughput combinatorial fitting, and information-theoretic model selection to generate both classification results and quantitative structural descriptors. We implement AutoSAS in an open-source package designed for use with the Autonomous Formulation Laboratory for x-ray and neutron scattering-based optimization of multi-component liquid formulations. In a first application, we leveraged a set of expert defined candidate models to classify, refine the structure, and track transformations in a model injectable drug carrier system. We evaluated four model selection methods and benchmarked them against an optimized machine learning classifier, and the best approach was one that balanced quality of the fit and complexity of the model. AutoSAS not only corroborated the critical micelle concentration boundary identified in previous experiments but also discovered a second structural transition boundary not identified by the previous methods. These results demonstrate the potential of AutoSAS to enhance autonomous experimental workflows by providing robust, interpretable model selection, paving the way for more reliable and insightful structural characterization in complex formulations.

人工智能驱动的自主实验的发展需要基于物理的建模和决策过程,不仅要提高实验轨迹的准确性,而且要通过透明的人机协作来增加信任。高质量的结构表征技术(如x射线、中子或静态光散射)是这种需求的一个特别相关的例子:它们提供了宝贵的信息,但在没有专家监督的情况下很难进行分析。在这里,我们介绍AutoSAS,这是一种用于人工旁路自动数据分类的新框架。AutoSAS利用人类定义的候选模型、高通量组合拟合和信息论模型选择来生成分类结果和定量结构描述符。我们在一个开源软件包中实现了AutoSAS,该软件包设计用于自主配方实验室,用于基于x射线和中子散射的多组分液体配方优化。在第一个应用程序中,我们利用一组专家定义的候选模型对可注射药物载体系统中的模型进行分类、优化结构和跟踪转换。我们评估了四种模型选择方法,并将它们与优化的机器学习分类器进行了基准测试,最好的方法是平衡模型的拟合质量和复杂性。AutoSAS不仅证实了先前实验中发现的临界胶束浓度边界,而且还发现了先前方法未发现的第二个结构过渡边界。这些结果证明了AutoSAS通过提供强大的、可解释的模型选择来增强自主实验工作流程的潜力,为复杂配方中更可靠、更有洞察力的结构表征铺平了道路。
{"title":"AutoSAS: A new human-aside-the-loop paradigm for automated SAS fitting for high throughput and autonomous experimentation.","authors":"Duncan R Sutherland, Rachel Ford, Yun Liu, Tyler B Martin, Peter A Beaucage","doi":"10.1063/5.0271073","DOIUrl":"https://doi.org/10.1063/5.0271073","url":null,"abstract":"<p><p>The advancement of artificial-intelligence driven autonomous experiments demands physics-based modeling and decision-making processes, not only to improve the accuracy of the experimental trajectory but also to increase trust by allowing transparent human-machine collaboration. High-quality structural characterization techniques (e.g., x ray, neutron, or static light scattering) are a particularly relevant example of this need: they provide invaluable information but are challenging to analyze without expert oversight. Here, we introduce AutoSAS, a novel framework for human-aside-the-loop automated data classification. AutoSAS leverages human-defined candidate models, high-throughput combinatorial fitting, and information-theoretic model selection to generate both classification results and quantitative structural descriptors. We implement AutoSAS in an open-source package designed for use with the Autonomous Formulation Laboratory for x-ray and neutron scattering-based optimization of multi-component liquid formulations. In a first application, we leveraged a set of expert defined candidate models to classify, refine the structure, and track transformations in a model injectable drug carrier system. We evaluated four model selection methods and benchmarked them against an optimized machine learning classifier, and the best approach was one that balanced quality of the fit and complexity of the model. AutoSAS not only corroborated the critical micelle concentration boundary identified in previous experiments but also discovered a second structural transition boundary not identified by the previous methods. These results demonstrate the potential of AutoSAS to enhance autonomous experimental workflows by providing robust, interpretable model selection, paving the way for more reliable and insightful structural characterization in complex formulations.</p>","PeriodicalId":520238,"journal":{"name":"APL machine learning","volume":"3 3","pages":"036111"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144985797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dreaming of electrical waves: Generative modeling of cardiac excitation waves using diffusion models. 电波之梦利用扩散模型对心脏激发波进行生成建模。
Pub Date : 2024-09-01 Epub Date: 2024-09-23 DOI: 10.1063/5.0194391
Tanish Baranwal, Jan Lebert, Jan Christoph

Electrical waves in the heart form rotating spiral or scroll waves during life-threatening arrhythmias, such as atrial or ventricular fibrillation. The wave dynamics are typically modeled using coupled partial differential equations, which describe reaction-diffusion dynamics in excitable media. More recently, data-driven generative modeling has emerged as an alternative to generate spatio-temporal patterns in physical and biological systems. Here, we explore denoising diffusion probabilistic models for the generative modeling of electrical wave patterns in cardiac tissue. We trained diffusion models with simulated electrical wave patterns to be able to generate such wave patterns in unconditional and conditional generation tasks. For instance, we explored the diffusion-based (i) parameter-specific generation, (ii) evolution, and (iii) inpainting of spiral wave dynamics, including reconstructing three-dimensional scroll wave dynamics from superficial two-dimensional measurements. Furthermore, we generated arbitrarily shaped bi-ventricular geometries and simultaneously initiated scroll wave patterns inside these geometries using diffusion. We characterized and compared the diffusion-generated solutions to solutions obtained with corresponding biophysical models and found that diffusion models learn to replicate spiral and scroll wave dynamics so well that they could be used for data-driven modeling of excitation waves in cardiac tissue. For instance, an ensemble of diffusion-generated spiral wave dynamics exhibits similar self-termination statistics as the corresponding ensemble simulated with a biophysical model. However, we also found that diffusion models produce artifacts if training data are lacking, e.g., during self-termination, and "hallucinate" wave patterns when insufficiently constrained.

在心房或心室颤动等危及生命的心律失常时,心脏中的电波会形成旋转螺旋波或涡旋波。电波动力学通常使用耦合偏微分方程进行建模,该方程描述了可激介质中的反应-扩散动力学。最近,数据驱动生成建模已成为在物理和生物系统中生成时空模式的另一种方法。在此,我们探讨了用于心脏组织电波模式生成模型的去噪扩散概率模型。我们用模拟电波模式训练扩散模型,使其能够在无条件和有条件的生成任务中生成这种电波模式。例如,我们探索了基于扩散的(i) 特定参数生成、(ii) 演化和(iii) 螺旋波动态涂色,包括从表面二维测量重建三维涡旋波动态。此外,我们还生成了任意形状的双心室几何图形,并同时利用扩散在这些几何图形内启动涡旋波模式。我们将扩散生成的解与相应生物物理模型得到的解进行了表征和比较,发现扩散模型能很好地复制螺旋波和涡旋波动力学,因此可用于心脏组织中以数据为驱动的激发波建模。例如,扩散产生的螺旋波动力学集合显示出与生物物理模型模拟的相应集合相似的自终止统计量。然而,我们也发现,如果缺乏训练数据,扩散模型就会产生假象,例如在自终止时,如果约束不足,就会产生 "幻觉 "波形。
{"title":"Dreaming of electrical waves: Generative modeling of cardiac excitation waves using diffusion models.","authors":"Tanish Baranwal, Jan Lebert, Jan Christoph","doi":"10.1063/5.0194391","DOIUrl":"10.1063/5.0194391","url":null,"abstract":"<p><p>Electrical waves in the heart form rotating spiral or scroll waves during life-threatening arrhythmias, such as atrial or ventricular fibrillation. The wave dynamics are typically modeled using coupled partial differential equations, which describe reaction-diffusion dynamics in excitable media. More recently, data-driven generative modeling has emerged as an alternative to generate spatio-temporal patterns in physical and biological systems. Here, we explore denoising diffusion probabilistic models for the generative modeling of electrical wave patterns in cardiac tissue. We trained diffusion models with simulated electrical wave patterns to be able to generate such wave patterns in unconditional and conditional generation tasks. For instance, we explored the diffusion-based (i) parameter-specific generation, (ii) evolution, and (iii) inpainting of spiral wave dynamics, including reconstructing three-dimensional scroll wave dynamics from superficial two-dimensional measurements. Furthermore, we generated arbitrarily shaped bi-ventricular geometries and simultaneously initiated scroll wave patterns inside these geometries using diffusion. We characterized and compared the diffusion-generated solutions to solutions obtained with corresponding biophysical models and found that diffusion models learn to replicate spiral and scroll wave dynamics so well that they could be used for data-driven modeling of excitation waves in cardiac tissue. For instance, an ensemble of diffusion-generated spiral wave dynamics exhibits similar self-termination statistics as the corresponding ensemble simulated with a biophysical model. However, we also found that diffusion models produce artifacts if training data are lacking, e.g., during self-termination, and \"hallucinate\" wave patterns when insufficiently constrained.</p>","PeriodicalId":520238,"journal":{"name":"APL machine learning","volume":"2 3","pages":"036113"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
APL machine learning
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1