首页 > 最新文献

APL machine learning最新文献

英文 中文
Dreaming of electrical waves: Generative modeling of cardiac excitation waves using diffusion models. 电波之梦利用扩散模型对心脏激发波进行生成建模。
Pub Date : 2024-09-01 Epub Date: 2024-09-23 DOI: 10.1063/5.0194391
Tanish Baranwal, Jan Lebert, Jan Christoph

Electrical waves in the heart form rotating spiral or scroll waves during life-threatening arrhythmias, such as atrial or ventricular fibrillation. The wave dynamics are typically modeled using coupled partial differential equations, which describe reaction-diffusion dynamics in excitable media. More recently, data-driven generative modeling has emerged as an alternative to generate spatio-temporal patterns in physical and biological systems. Here, we explore denoising diffusion probabilistic models for the generative modeling of electrical wave patterns in cardiac tissue. We trained diffusion models with simulated electrical wave patterns to be able to generate such wave patterns in unconditional and conditional generation tasks. For instance, we explored the diffusion-based (i) parameter-specific generation, (ii) evolution, and (iii) inpainting of spiral wave dynamics, including reconstructing three-dimensional scroll wave dynamics from superficial two-dimensional measurements. Furthermore, we generated arbitrarily shaped bi-ventricular geometries and simultaneously initiated scroll wave patterns inside these geometries using diffusion. We characterized and compared the diffusion-generated solutions to solutions obtained with corresponding biophysical models and found that diffusion models learn to replicate spiral and scroll wave dynamics so well that they could be used for data-driven modeling of excitation waves in cardiac tissue. For instance, an ensemble of diffusion-generated spiral wave dynamics exhibits similar self-termination statistics as the corresponding ensemble simulated with a biophysical model. However, we also found that diffusion models produce artifacts if training data are lacking, e.g., during self-termination, and "hallucinate" wave patterns when insufficiently constrained.

在心房或心室颤动等危及生命的心律失常时,心脏中的电波会形成旋转螺旋波或涡旋波。电波动力学通常使用耦合偏微分方程进行建模,该方程描述了可激介质中的反应-扩散动力学。最近,数据驱动生成建模已成为在物理和生物系统中生成时空模式的另一种方法。在此,我们探讨了用于心脏组织电波模式生成模型的去噪扩散概率模型。我们用模拟电波模式训练扩散模型,使其能够在无条件和有条件的生成任务中生成这种电波模式。例如,我们探索了基于扩散的(i) 特定参数生成、(ii) 演化和(iii) 螺旋波动态涂色,包括从表面二维测量重建三维涡旋波动态。此外,我们还生成了任意形状的双心室几何图形,并同时利用扩散在这些几何图形内启动涡旋波模式。我们将扩散生成的解与相应生物物理模型得到的解进行了表征和比较,发现扩散模型能很好地复制螺旋波和涡旋波动力学,因此可用于心脏组织中以数据为驱动的激发波建模。例如,扩散产生的螺旋波动力学集合显示出与生物物理模型模拟的相应集合相似的自终止统计量。然而,我们也发现,如果缺乏训练数据,扩散模型就会产生假象,例如在自终止时,如果约束不足,就会产生 "幻觉 "波形。
{"title":"Dreaming of electrical waves: Generative modeling of cardiac excitation waves using diffusion models.","authors":"Tanish Baranwal, Jan Lebert, Jan Christoph","doi":"10.1063/5.0194391","DOIUrl":"10.1063/5.0194391","url":null,"abstract":"<p><p>Electrical waves in the heart form rotating spiral or scroll waves during life-threatening arrhythmias, such as atrial or ventricular fibrillation. The wave dynamics are typically modeled using coupled partial differential equations, which describe reaction-diffusion dynamics in excitable media. More recently, data-driven generative modeling has emerged as an alternative to generate spatio-temporal patterns in physical and biological systems. Here, we explore denoising diffusion probabilistic models for the generative modeling of electrical wave patterns in cardiac tissue. We trained diffusion models with simulated electrical wave patterns to be able to generate such wave patterns in unconditional and conditional generation tasks. For instance, we explored the diffusion-based (i) parameter-specific generation, (ii) evolution, and (iii) inpainting of spiral wave dynamics, including reconstructing three-dimensional scroll wave dynamics from superficial two-dimensional measurements. Furthermore, we generated arbitrarily shaped bi-ventricular geometries and simultaneously initiated scroll wave patterns inside these geometries using diffusion. We characterized and compared the diffusion-generated solutions to solutions obtained with corresponding biophysical models and found that diffusion models learn to replicate spiral and scroll wave dynamics so well that they could be used for data-driven modeling of excitation waves in cardiac tissue. For instance, an ensemble of diffusion-generated spiral wave dynamics exhibits similar self-termination statistics as the corresponding ensemble simulated with a biophysical model. However, we also found that diffusion models produce artifacts if training data are lacking, e.g., during self-termination, and \"hallucinate\" wave patterns when insufficiently constrained.</p>","PeriodicalId":520238,"journal":{"name":"APL machine learning","volume":"2 3","pages":"036113"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
APL machine learning
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1