首页 > 最新文献

Applied catalysis, O, Open最新文献

英文 中文
Engineering decentralized electrodisinfection to sustain consistent chlorine generation under varying drinking water chloride content. 分散式电解消毒工程,在饮用水氯化物含量变化的情况下保持稳定的氯气生成。
Pub Date : 2024-10-01 DOI: 10.1016/j.apcato.2024.207012
Aksana Atrashkevich, Sergi Garcia-Segura

In situ electrochlorination can offer an efficient and feasible solution to enable decentralized water disinfection. Unfortunately, there has been only a limited number of studies exploring single-pass flow cell systems with representative flowrates used at household level, particularly under varying chloride concentrations. This work aims to assess anode materials in a single pass and examine the impact of cross velocity, current density, and chloride concentration on various responses such as chlorine production and energy consumption. The primary objective is to determine whether the flow cell can achieve desirable chlorine levels under consistent operation while chloride content of water varies. Chlorine (Cl2/HOCl/OCl-), chlorine dioxide (ClO2) production, and toxic oxyanions (ClO3 -, ClO4 -) were assessed in a single pass setup utilizing different representative anodes including Ti/RuO2, Ti/IrO2, and Boron-doped diamond. Among these materials, the Ti/RuO2 anode emerged as the most suitable for effective chlorine generation while minimizing the formation of ClO3 - and ClO4 -. The performance of in situ electrochlorination using the Ti/RuO2 anode in the flow cell revealed that cross velocity exerted the most significant influence on chlorine generation, while chloride content and current density primarily impacted energy consumption. Optimization of the operating parameters illustrated that stable chlorine concentrations ranging from 2 to 4 mg L-1 could be maintained even with significant fluctuations in chloride concentration from 50 to 250 mg L-1, resulting in a daily energy consumption of less than 0.07 kWh per treated volume of 634 L (i.e., < 0.11 Wh L-1). These experimental findings hold promise for advancing electrodisinfection systems to higher technological readiness level.

原位电氯化法可以为分散式水消毒提供高效可行的解决方案。遗憾的是,目前仅有少数研究探讨了具有代表性流量的单程流动池系统在家庭中的应用,尤其是在氯化物浓度变化的情况下。这项工作旨在评估单程中的阳极材料,并研究横流速度、电流密度和氯化物浓度对氯气产量和能耗等各种反应的影响。主要目的是确定流动池是否能在持续运行的情况下达到理想的氯含量,而同时水中的氯化物含量会发生变化。利用不同的代表性阳极(包括 Ti/RuO2、Ti/IrO2 和掺硼金刚石),在单程设置中评估了氯(Cl2/HOCl/OCl-)、二氧化氯(ClO2)的产生量和有毒氧阴离子(ClO3 -、ClO4 -)。在这些材料中,Ti/RuO2 阳极最适合有效生成氯,同时最大限度地减少 ClO3 - 和 ClO4 - 的形成。在流动池中使用 Ti/RuO2 阳极进行原位电氯化的性能表明,横流速度对氯生成的影响最大,而氯含量和电流密度则主要影响能耗。对操作参数的优化表明,即使氯化物浓度在 50 至 250 毫克/升之间大幅波动,也能保持 2 至 4 毫克/升的稳定氯浓度,从而使每 634 升处理量的日能耗低于 0.07 千瓦时(即小于 0.11 Wh/升)。这些实验结果为将电消毒系统提升到更高的技术准备水平带来了希望。
{"title":"Engineering decentralized electrodisinfection to sustain consistent chlorine generation under varying drinking water chloride content.","authors":"Aksana Atrashkevich, Sergi Garcia-Segura","doi":"10.1016/j.apcato.2024.207012","DOIUrl":"https://doi.org/10.1016/j.apcato.2024.207012","url":null,"abstract":"<p><p><i>In situ</i> electrochlorination can offer an efficient and feasible solution to enable decentralized water disinfection. Unfortunately, there has been only a limited number of studies exploring single-pass flow cell systems with representative flowrates used at household level, particularly under varying chloride concentrations. This work aims to assess anode materials in a single pass and examine the impact of cross velocity, current density, and chloride concentration on various responses such as chlorine production and energy consumption. The primary objective is to determine whether the flow cell can achieve desirable chlorine levels under consistent operation while chloride content of water varies. Chlorine (Cl<sub>2</sub>/HOCl/OCl<sup>-</sup>), chlorine dioxide (ClO<sub>2</sub>) production, and toxic oxyanions (ClO<sub>3</sub> <sup>-</sup>, ClO<sub>4</sub> <sup>-</sup>) were assessed in a single pass setup utilizing different representative anodes including Ti/RuO<sub>2</sub>, Ti/IrO<sub>2</sub>, and Boron-doped diamond. Among these materials, the Ti/RuO<sub>2</sub> anode emerged as the most suitable for effective chlorine generation while minimizing the formation of ClO<sub>3</sub> <sup>-</sup> and ClO<sub>4</sub> <sup>-</sup>. The performance of <i>in situ</i> electrochlorination using the Ti/RuO<sub>2</sub> anode in the flow cell revealed that cross velocity exerted the most significant influence on chlorine generation, while chloride content and current density primarily impacted energy consumption. Optimization of the operating parameters illustrated that stable chlorine concentrations ranging from 2 to 4 mg L<sup>-1</sup> could be maintained even with significant fluctuations in chloride concentration from 50 to 250 mg L<sup>-1</sup>, resulting in a daily energy consumption of less than 0.07 kWh per treated volume of 634 L (i.e., < 0.11 Wh L<sup>-1</sup>). These experimental findings hold promise for advancing electrodisinfection systems to higher technological readiness level.</p>","PeriodicalId":520246,"journal":{"name":"Applied catalysis, O, Open","volume":"195 ","pages":"None"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142485584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied catalysis, O, Open
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1