首页 > 最新文献

Journal of computational and cognitive engineering最新文献

英文 中文
Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine.
Pub Date : 2024-11-22 Epub Date: 2024-05-23 DOI: 10.47852/bonviewjcce42022789
Gengsheng L Zeng

A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization problems. The Boltzmann machines are usually considered probability models. Probability models normally use nondeterministic algorithms to solve their parameters. The Hopfield network which is also known as the Ising model is a special case of a Boltzmann machine, in the sense that the hidden layer is the same as the visible layer. The weights and biases from the visible layer to the hidden layer are the same as the weights and biases from the hidden layer to the visible layer. When the Hopfield network is considered a probabilistic model, everything is treated as stochastic (i.e., random) and nondeterministic. An optimization problem in the Hopfield network is considered searching for the samples that have higher probabilities according to a probability density function. This paper proposes a method to consider the Hopfield network as a deterministic model, in which nothing is random, and no stochastic distribution is used. An optimization problem associated with the Hopfield network thus has a deterministic objective function (also known as loss function or cost function) that is the energy function itself. The purpose of the objective function is to assist the Hopfield network to reach a state that has a lower energy. This study suggests that deterministic optimization algorithms can be used for the associated optimization problems. The deterministic algorithm has the same mathematical form for the calculation of a perceptron that consists of a dot product, a bias, and a nonlinear activation function. This paper uses some examples of searching for stable states to demonstrate that the deterministic optimization method may have a faster convergence rate and smaller errors.

{"title":"Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine.","authors":"Gengsheng L Zeng","doi":"10.47852/bonviewjcce42022789","DOIUrl":"10.47852/bonviewjcce42022789","url":null,"abstract":"<p><p>A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization problems. The Boltzmann machines are usually considered probability models. Probability models normally use nondeterministic algorithms to solve their parameters. The Hopfield network which is also known as the Ising model is a special case of a Boltzmann machine, in the sense that the hidden layer is the same as the visible layer. The weights and biases from the visible layer to the hidden layer are the same as the weights and biases from the hidden layer to the visible layer. When the Hopfield network is considered a probabilistic model, everything is treated as stochastic (i.e., random) and nondeterministic. An optimization problem in the Hopfield network is considered searching for the samples that have higher probabilities according to a probability density function. This paper proposes a method to consider the Hopfield network as a deterministic model, in which nothing is random, and no stochastic distribution is used. An optimization problem associated with the Hopfield network thus has a deterministic objective function (also known as loss function or cost function) that is the energy function itself. The purpose of the objective function is to assist the Hopfield network to reach a state that has a lower energy. This study suggests that deterministic optimization algorithms can be used for the associated optimization problems. The deterministic algorithm has the same mathematical form for the calculation of a perceptron that consists of a dot product, a bias, and a nonlinear activation function. This paper uses some examples of searching for stable states to demonstrate that the deterministic optimization method may have a faster convergence rate and smaller errors.</p>","PeriodicalId":520328,"journal":{"name":"Journal of computational and cognitive engineering","volume":"3 4","pages":"404-411"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of computational and cognitive engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1