首页 > 最新文献

Journal of physics. Conference series最新文献

英文 中文
Comparing methods for aggregating indoor air pollutant concentration over space and time. 室内空气污染物浓度随时间和空间的聚合方法比较。
Pub Date : 2025-11-01 DOI: 10.1088/1742-6596/3140/9/092013
G Petrou, Y Wang, Z Chalabi, S C Hsu, E Hutchinson, J Milner, P Symonds, M Davies

This paper explores the impact of different approaches to aggregating the indoor concentration of fine particulate matter (PM2.5) in a case study home. Indoor- and outdoor-sourced PM2.5 was modelled in CONTAM-EnergyPlus for a bungalow occupied by a family of four in Plymouth, England. Simulations were conducted assuming energy efficiency levels typical of a 1950s home and following retrofit. Pollutants were modelled at a 5-min temporal resolution in bedrooms, kitchen and living room and aggregated according to four metrics: (i) household arithmetic mean concentration, (ii) household time-weighted mean concentration, (iii) arithmetic mean of individual exposure, and (iv) household arithmetic mean exposure. Comparing the household metrics revealed differences of up to 50.0 % (3.6 μg/m3) for the pre-retrofit model, which remained largely consistent following retrofit. When comparing against individual exposure, differences were observed for all three metrics and reached 55.6% (9.1 μg/m3) for the pre-retrofit model, and 50.6% (8.7 μg/m3) for the post-retrofit model. Approaches (i) and (ii) consistently underpredicted individual exposure. Further, the differences were greatest for the time-weighted mean method, suggesting that taking into consideration the total time that each room is occupied but not when it is occupied will not necessarily provide a more accurate description of occupant exposure compared to the simple arithmetic mean. To better represent individual exposure, data on occupant presence is required.

本文以一个家庭为例,探讨了不同方法对室内细颗粒物(PM2.5)浓度的影响。在英国普利茅斯的一个四口之家居住的平房中,采用了pollution - energyplus模型来模拟室内和室外的PM2.5。模拟进行假设能源效率水平典型的20世纪50年代的家庭和随后的改造。以卧室、厨房和客厅的5分钟时间分辨率对污染物进行建模,并根据四个指标进行汇总:(i)家庭算术平均浓度,(ii)家庭时间加权平均浓度,(iii)个人暴露的算术平均值,以及(iv)家庭算术平均暴露。比较家庭指标显示,改造前模型的差异高达50.0% (3.6 μg/m3),改造后基本保持一致。与个体暴露相比,这三个指标的差异在改造前模型中达到55.6% (9.1 μg/m3),在改造后模型中达到50.6% (8.7 μg/m3)。方法(i)和(ii)始终低估了个体暴露。此外,时间加权平均方法的差异最大,这表明,与简单的算术平均值相比,考虑每个房间被占用的总时间而不是被占用的时间不一定能更准确地描述居住者的暴露情况。为了更好地代表个人暴露,需要有关乘员存在的数据。
{"title":"Comparing methods for aggregating indoor air pollutant concentration over space and time.","authors":"G Petrou, Y Wang, Z Chalabi, S C Hsu, E Hutchinson, J Milner, P Symonds, M Davies","doi":"10.1088/1742-6596/3140/9/092013","DOIUrl":"10.1088/1742-6596/3140/9/092013","url":null,"abstract":"<p><p>This paper explores the impact of different approaches to aggregating the indoor concentration of fine particulate matter (PM<sub>2.5</sub>) in a case study home. Indoor- and outdoor-sourced PM<sub>2.5</sub> was modelled in CONTAM-EnergyPlus for a bungalow occupied by a family of four in Plymouth, England. Simulations were conducted assuming energy efficiency levels typical of a 1950s home and following retrofit. Pollutants were modelled at a 5-min temporal resolution in bedrooms, kitchen and living room and aggregated according to four metrics: (i) household arithmetic mean concentration, (ii) household time-weighted mean concentration, (iii) arithmetic mean of individual exposure, and (iv) household arithmetic mean exposure. Comparing the household metrics revealed differences of up to 50.0 % (3.6 μg/m<sup>3</sup>) for the pre-retrofit model, which remained largely consistent following retrofit. When comparing against individual exposure, differences were observed for all three metrics and reached 55.6% (9.1 μg/m<sup>3</sup>) for the pre-retrofit model, and 50.6% (8.7 μg/m<sup>3</sup>) for the post-retrofit model. Approaches (i) and (ii) consistently underpredicted individual exposure. Further, the differences were greatest for the time-weighted mean method, suggesting that taking into consideration the total time that each room is occupied but not when it is occupied will not necessarily provide a more accurate description of occupant exposure compared to the simple arithmetic mean. To better represent individual exposure, data on occupant presence is required.</p>","PeriodicalId":520472,"journal":{"name":"Journal of physics. Conference series","volume":"3140 9","pages":"092013-92013"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7618645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146014137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-in-SAM: from Weak Annotation to Pixel-wise Nuclei Segmentation with Prompt-based Finetuning. All-in-SAM:从弱注释到基于提示微调的逐像素核分割。
Pub Date : 2024-01-01 DOI: 10.1088/1742-6596/2722/1/012012
Can Cui, Ruining Deng, Quan Liu, Tianyuan Yao, Shunxing Bao, Lucas W Remedios, Bennett A Landman, Yucheng Tang, Yuankai Huo

The Segment Anything Model (SAM) is a recently proposed prompt-based segmentation model in a generic zero-shot segmentation approach. With the zero-shot segmentation capacity, SAM achieved impressive flexibility and precision on various segmentation tasks. However, the current pipeline requires manual prompts during the inference stage, which is still resource intensive for biomedical image segmentation. In this paper, instead of using prompts during the inference stage, we introduce a pipeline that utilizes the SAM, called all-in-SAM, through the entire AI development workflow (from annotation generation to model finetuning) without requiring manual prompts during the inference stage. Specifically, SAM is first employed to generate pixel-level annotations from weak prompts (e.g., points, bounding box). Then, the pixel-level annotations are used to finetune the SAM segmentation model rather than training from scratch. Our experimental results reveal two key findings: 1) the proposed pipeline surpasses the state-of-the-art methods in a nuclei segmentation task on the public Monuseg dataset, and 2) the utilization of weak and few annotations for SAM finetuning achieves competitive performance compared to using strong pixelwise annotated data.

分段任意模型(SAM)是近年来提出的一种基于提示的通用零分方法的分段模型。凭借零射击分割能力,SAM在各种分割任务上取得了令人印象深刻的灵活性和精度。然而,目前的流水线在推理阶段需要人工提示,这对于生物医学图像分割来说仍然是资源密集型的。在本文中,我们没有在推理阶段使用提示,而是引入了一个利用SAM的管道,称为all-in-SAM,通过整个AI开发工作流(从注释生成到模型微调),而不需要在推理阶段使用手动提示。具体来说,首先使用SAM从弱提示(例如,点、边界框)生成像素级注释。然后,使用像素级注释来微调SAM分割模型,而不是从头开始训练。我们的实验结果揭示了两个关键发现:1)所提出的管道在公共Monuseg数据集上的核分割任务中超过了最先进的方法;2)与使用强像素注释数据相比,使用弱和少注释进行SAM微调获得了具有竞争力的性能。
{"title":"All-in-SAM: from Weak Annotation to Pixel-wise Nuclei Segmentation with Prompt-based Finetuning.","authors":"Can Cui, Ruining Deng, Quan Liu, Tianyuan Yao, Shunxing Bao, Lucas W Remedios, Bennett A Landman, Yucheng Tang, Yuankai Huo","doi":"10.1088/1742-6596/2722/1/012012","DOIUrl":"10.1088/1742-6596/2722/1/012012","url":null,"abstract":"<p><p>The Segment Anything Model (SAM) is a recently proposed prompt-based segmentation model in a generic zero-shot segmentation approach. With the zero-shot segmentation capacity, SAM achieved impressive flexibility and precision on various segmentation tasks. However, the current pipeline requires manual prompts during the inference stage, which is still resource intensive for biomedical image segmentation. In this paper, instead of using prompts during the inference stage, we introduce a pipeline that utilizes the SAM, called all-in-SAM, through the entire AI development workflow (from annotation generation to model finetuning) without requiring manual prompts during the inference stage. Specifically, SAM is first employed to generate pixel-level annotations from weak prompts (e.g., points, bounding box). Then, the pixel-level annotations are used to finetune the SAM segmentation model rather than training from scratch. Our experimental results reveal two key findings: 1) the proposed pipeline surpasses the state-of-the-art methods in a nuclei segmentation task on the public Monuseg dataset, and 2) the utilization of weak and few annotations for SAM finetuning achieves competitive performance compared to using strong pixelwise annotated data.</p>","PeriodicalId":520472,"journal":{"name":"Journal of physics. Conference series","volume":"2722 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143672237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of physics. Conference series
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1