首页 > 最新文献

排灌机械工程学报最新文献

英文 中文
Comparisons between numerical calculations and measurements in vaned diffuser of SHF impeller SHF叶轮叶片扩散器数值计算与实测的比较
Q3 Engineering Pub Date : 2013-12-01 DOI: 10.3969/J.ISSN.1674-8530.2013.12.001
A. Bayeul-Lainé, P. Dupont, G. Cavazzini, A. Dazin, G. Bois, O. Roussette
The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV (Particle Image Velocimetry) and pressure probe traverses. PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates. These results have been already presented in several previous communications. New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats. Numerical simulations are also realized with the commercial codes Star CCM+ 7.02.011 and CFX. Frozen rotor and fully unsteady calculations of the whole pump have been performed. Comparisons between numerical results, previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate. In this respect, a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affect the real flow structure inside the diffuser.
本文采用PIV(粒子图像测速法)和压力探头对径向流泵叶片扩压器的性能和内部流动特性进行了分析。对于给定的旋转速度和不同的质量流量,PIV测量已经在一个扩压器通道内的中等高度进行了。这些结果已在以前的几份来文中提出。利用一个三孔压力探头在两个扩压器几何喉道之间的不同径向位置从轮毂到叶冠扩压器宽度进行了新的实验。并利用商用代码Star CCM+ 7.02.011和CFX进行了数值模拟。对整个泵进行了冻结转子和全非定常计算。对某一质量流率下的PIV数值计算结果、以往的PIV实验结果和新型探针遍历法进行了比较和讨论。在这方面,考虑泵的旋转部分和固定部分之间的流体泄漏的第一次尝试已经进行了检查,因为它可能影响扩散器内部的实际流动结构。
{"title":"Comparisons between numerical calculations and measurements in vaned diffuser of SHF impeller","authors":"A. Bayeul-Lainé, P. Dupont, G. Cavazzini, A. Dazin, G. Bois, O. Roussette","doi":"10.3969/J.ISSN.1674-8530.2013.12.001","DOIUrl":"https://doi.org/10.3969/J.ISSN.1674-8530.2013.12.001","url":null,"abstract":"The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV (Particle Image Velocimetry) and pressure probe traverses. PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates. These results have been already presented in several previous communications. New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats. Numerical simulations are also realized with the commercial codes Star CCM+ 7.02.011 and CFX. Frozen rotor and fully unsteady calculations of the whole pump have been performed. Comparisons between numerical results, previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate. In this respect, a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affect the real flow structure inside the diffuser.","PeriodicalId":53624,"journal":{"name":"排灌机械工程学报","volume":"59 1","pages":"1013-1020"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89564111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radial forces of waterjet propulsion mixed-flow pump 水射流推进混流泵径向力
Q3 Engineering Pub Date : 2012-11-01 DOI: 10.3969/J.ISSN.1674-8530.2012.06.004
Li Cheng, B. Esch, Chao Liu, Jiren Zhou, Yan Jin
Fluctuations of fluid pressure in hydraulic machinery can cause resonance and fatigue da-mage of blades. In order to study fluid-induced forces, which are caused by impeller-diffuser interaction, unsteady radial forces due such an effect was conducted in a mixed-flow pump with a vaned diffuser by using CFD computation and model experiment. A closed-loop test rig was built for the pump and a co-rotating dynamometer was installed between the impeller and the pump shaft to measure the instantaneous forces and moments on the impeller. The dynamic behavior of the experimental rotor-shaft system was determined by carrying out extensive calibrations. The measured forces at the blade passing frequency showed an unexpected dependency on flow rate. Another important observation was that the blade excitation forces cause the impeller to whirl in the direction opposite to shaft rotation. The computed global characteristics and the magnitude of blade interaction forces showed good agreement with measurements, respectively. The measured results were compared with the unsteady ones estimated by using CFD code-Fluent. Over a large range of flow rates, the trend of force variation agrees well with the measurements. The reasons for deviation of prediction from experiment were explained.
液压机械中流体压力的波动会引起叶片的共振和疲劳损伤。为了研究叶轮-扩压器相互作用引起的流体诱导力,采用CFD计算和模型实验的方法,对带叶片扩压器的混流泵进行了非定常径向力研究。建立了泵的闭环试验台,在叶轮和泵轴之间安装了共转测功仪,测量叶轮上的瞬时力和力矩。通过大量的标定,确定了实验转子-轴系统的动态特性。在叶片通过频率处测得的力与流量有意想不到的关系。另一个重要的观察结果是叶片的激励力使叶轮向与轴旋转相反的方向旋转。计算得到的叶片相互作用力的整体特性和大小与实测结果吻合较好。实测结果与CFD软件fluent计算的非定常结果进行了比较。在较大的流量范围内,力的变化趋势与测量结果吻合较好。分析了预测结果与实验结果偏差的原因。
{"title":"Radial forces of waterjet propulsion mixed-flow pump","authors":"Li Cheng, B. Esch, Chao Liu, Jiren Zhou, Yan Jin","doi":"10.3969/J.ISSN.1674-8530.2012.06.004","DOIUrl":"https://doi.org/10.3969/J.ISSN.1674-8530.2012.06.004","url":null,"abstract":"Fluctuations of fluid pressure in hydraulic machinery can cause resonance and fatigue da-mage of blades. In order to study fluid-induced forces, which are caused by impeller-diffuser interaction, unsteady radial forces due such an effect was conducted in a mixed-flow pump with a vaned diffuser by using CFD computation and model experiment. A closed-loop test rig was built for the pump and a co-rotating dynamometer was installed between the impeller and the pump shaft to measure the instantaneous forces and moments on the impeller. The dynamic behavior of the experimental rotor-shaft system was determined by carrying out extensive calibrations. The measured forces at the blade passing frequency showed an unexpected dependency on flow rate. Another important observation was that the blade excitation forces cause the impeller to whirl in the direction opposite to shaft rotation. The computed global characteristics and the magnitude of blade interaction forces showed good agreement with measurements, respectively. The measured results were compared with the unsteady ones estimated by using CFD code-Fluent. Over a large range of flow rates, the trend of force variation agrees well with the measurements. The reasons for deviation of prediction from experiment were explained.","PeriodicalId":53624,"journal":{"name":"排灌机械工程学报","volume":"30 1","pages":"636-640"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82656842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flow pattern and hydraulic performance of tubular pump 列管泵的流态与水力性能
Q3 Engineering Pub Date : 2012-07-01 DOI: 10.3969/J.ISSN.1674-8530.2012.04.012
Li Cheng, Chao Liu, B. Esch, F. Tang, Yan Jin, Jiren Zhou
In order to establish a relationship between flow pattern and hydraulic performance of a tubular pump, the flow pattern and hydraulic performance at a low flow rate, best efficiency point and a high flow rate were investigated by means of flow simulation, performance test and PIV measurement in a tubular pump. The steady flow field in the pump was obtained through solving the time-averaged N-S equations in the multiple reference frames (MRF) with the help of the SIMPLEC algorithm and the RNG k-e turbulence model. The flow patterns in the pump were analyzed at different operating points. There was a large recirculation zone before the blades inlet when the pump operated at the low flow rate. The flow patterns were fine and there was no any reverse flow regions in the pump when it worked at the BEP (Best Efficiency Point) and the high flow rate. The results indicated the hydraulic loss in the suction pipe is similar to that in a normal pipe, but the hydraulic loss in the discharge pipe depended on operating points. A minimum hydraulic loss in the discharge appeared at the BEP. The estimated performance was in agreement with the test data, both the predicted flow patterns and the PIV measurements showed that there was remarked reverse flow region in front of blades near the tip and there existed a large separated flow zone near the hub downstream of blades at the low flow rate. Thus, attention should be paid on the flow pattern in impeller and guide vanes at a low flow rate in the optimal design of such a tubular pump.
为了建立列管泵的流态与水力性能之间的关系,采用流态仿真、性能试验和PIV测量等方法,对列管泵在低流量、最佳效率点和大流量时的流态和水力性能进行了研究。利用SIMPLEC算法和RNG k-e湍流模型,通过求解多参考系(MRF)下的时均N-S方程,得到了泵内的稳态流场。分析了不同工况下泵内的流态。当泵在低流量工况下运行时,叶片入口前存在较大的再循环区。在最佳效率点和大流量工况下,泵内流态良好,无回流区。结果表明:吸入管道的水力损失与普通管道相似,而排出管道的水力损失与工作点有关。在最大压力点处,水力损失最小。估计性能与试验数据吻合,预测流型和PIV测量结果均表明,叶片前靠近叶尖处存在明显的逆流区,叶片下游靠近轮毂处在低流量下存在较大的分离流区。因此,在对此类列管泵进行优化设计时,应注意小流量时叶轮和导叶内的流态。
{"title":"Flow pattern and hydraulic performance of tubular pump","authors":"Li Cheng, Chao Liu, B. Esch, F. Tang, Yan Jin, Jiren Zhou","doi":"10.3969/J.ISSN.1674-8530.2012.04.012","DOIUrl":"https://doi.org/10.3969/J.ISSN.1674-8530.2012.04.012","url":null,"abstract":"In order to establish a relationship between flow pattern and hydraulic performance of a tubular pump, the flow pattern and hydraulic performance at a low flow rate, best efficiency point and a high flow rate were investigated by means of flow simulation, performance test and PIV measurement in a tubular pump. The steady flow field in the pump was obtained through solving the time-averaged N-S equations in the multiple reference frames (MRF) with the help of the SIMPLEC algorithm and the RNG k-e turbulence model. The flow patterns in the pump were analyzed at different operating points. There was a large recirculation zone before the blades inlet when the pump operated at the low flow rate. The flow patterns were fine and there was no any reverse flow regions in the pump when it worked at the BEP (Best Efficiency Point) and the high flow rate. The results indicated the hydraulic loss in the suction pipe is similar to that in a normal pipe, but the hydraulic loss in the discharge pipe depended on operating points. A minimum hydraulic loss in the discharge appeared at the BEP. The estimated performance was in agreement with the test data, both the predicted flow patterns and the PIV measurements showed that there was remarked reverse flow region in front of blades near the tip and there existed a large separated flow zone near the hub downstream of blades at the low flow rate. Thus, attention should be paid on the flow pattern in impeller and guide vanes at a low flow rate in the optimal design of such a tubular pump.","PeriodicalId":53624,"journal":{"name":"排灌机械工程学报","volume":"1 1","pages":"436-441"},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86491043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
排灌机械工程学报
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1