首页 > 最新文献

生物物理学报最新文献

英文 中文
Reversible inactivation of dihydrolipoamide dehydrogenase by Angeli's salt. 安吉利盐对二氢脂酰胺脱氢酶的可逆灭活作用。
Pub Date : 2012-04-20
Liang-Jun Yan, Li Liu, Michael J Forster

Dihydrolipoamide dehydrogenase (DLDH) is a key component of 3 mitochondrial α-keto acid dehydrogenase complexes including pyruvate dehydrogenase complex, α-ketoglutarate dehydrogenase complex, and branched chain amino acid dehydrogenase complex. It is a pyridine-dependent disulfide oxidoreductase that is very sensitive to oxidative modifications by reactive nitrogen species (RNS) and reactive oxygen species (ROS). The objective of this study was to investigate the mechanisms of DLDH modification by RNS derived from Angeli's salt. Studies were conducted using isolated rat brain mitochondria that were incubated with varying concentrations of Angeli's salt followed by spectrophotometric enzyme assays, blue native gel analysis, and 2-dimensional gel-based proteomic approaches. Results show that DLDH could be inactivated by Angeli's salt in a concentration dependent manner and the inactivation was a targeting rather than a random process as peroxynitrite did not show any detectable inhibitory effect on the enzyme's activity under the same experimental conditions. Since Angeli's salt can readily decompose at physiological pH to yield nitroxyl anion (HNO) and nitric oxide, further studies were conducted to determine the actual RNS that was responsible for DLDH inactivation. Results indicate that it was HNO that exerted the effect of Angeli's salt on DLDH. Finally, two-dimensional Western blot analysis indicates that DLDH inactivation by Angeli's salt was accompanied by formation of protein s-nitrosothiols, suggesting that s-nitrosylation is likely the cause of loss in enzyme's activity. Taken together, the present study provides insights into mechanisms of DLDH inactivation induced by HNO derived from Angeli's salt.

二氢硫代酰胺脱氢酶(DLDH)是三种线粒体α-酮酸脱氢酶复合物(包括丙酮酸脱氢酶复合物、α-酮戊二酸脱氢酶复合物和支链氨基酸脱氢酶复合物)的关键组成部分。它是一种依赖吡啶的二硫氧化还原酶,对活性氮(RNS)和活性氧(ROS)的氧化修饰非常敏感。本研究的目的是探究 DLDH 受来自安吉利盐的 RNS 修饰的机制。研究使用了分离的大鼠脑线粒体,将其与不同浓度的安杰利盐进行培养,然后进行分光光度酶测定、蓝色原生凝胶分析和基于二维凝胶的蛋白质组学方法。结果表明,DLDH 能以浓度依赖性的方式被安杰利盐灭活,而且这种灭活是一种靶向过程,而不是随机过程,因为在相同的实验条件下,亚硝酸过氧化物对酶的活性没有显示出任何可检测到的抑制作用。由于安吉利盐在生理 pH 值下很容易分解生成硝基阴离子(HNO)和一氧化氮,因此我们进行了进一步研究,以确定导致 DLDH 失活的实际 RNS。结果表明,安杰利盐对 DLDH 起作用的是 HNO。最后,二维 Western 印迹分析表明,安杰利盐导致 DLDH 失活的同时会形成蛋白质 s-亚硝基硫醇,这表明 s-亚硝基化可能是导致酶活性丧失的原因。综上所述,本研究揭示了安吉利盐中的 HNO 诱导 DLDH 失活的机制。
{"title":"Reversible inactivation of dihydrolipoamide dehydrogenase by Angeli's salt.","authors":"Liang-Jun Yan, Li Liu, Michael J Forster","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Dihydrolipoamide dehydrogenase (DLDH) is a key component of 3 mitochondrial α-keto acid dehydrogenase complexes including pyruvate dehydrogenase complex, α-ketoglutarate dehydrogenase complex, and branched chain amino acid dehydrogenase complex. It is a pyridine-dependent disulfide oxidoreductase that is very sensitive to oxidative modifications by reactive nitrogen species (RNS) and reactive oxygen species (ROS). The objective of this study was to investigate the mechanisms of DLDH modification by RNS derived from Angeli's salt. Studies were conducted using isolated rat brain mitochondria that were incubated with varying concentrations of Angeli's salt followed by spectrophotometric enzyme assays, blue native gel analysis, and 2-dimensional gel-based proteomic approaches. Results show that DLDH could be inactivated by Angeli's salt in a concentration dependent manner and the inactivation was a targeting rather than a random process as peroxynitrite did not show any detectable inhibitory effect on the enzyme's activity under the same experimental conditions. Since Angeli's salt can readily decompose at physiological pH to yield nitroxyl anion (HNO) and nitric oxide, further studies were conducted to determine the actual RNS that was responsible for DLDH inactivation. Results indicate that it was HNO that exerted the effect of Angeli's salt on DLDH. Finally, two-dimensional Western blot analysis indicates that DLDH inactivation by Angeli's salt was accompanied by formation of protein s-nitrosothiols, suggesting that s-nitrosylation is likely the cause of loss in enzyme's activity. Taken together, the present study provides insights into mechanisms of DLDH inactivation induced by HNO derived from Angeli's salt.</p>","PeriodicalId":62275,"journal":{"name":"生物物理学报","volume":"28 4","pages":"341-350"},"PeriodicalIF":0.0,"publicationDate":"2012-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490496/pdf/nihms383847.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31038121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of SREBP-Mediated Gene Expression. srebp介导的基因表达调控。
Pub Date : 2012-01-01 DOI: 10.3724/SP.J.1260.2012.20034
Zhao Xiaoping, Yang Fajun

The sterol regulatory element-binding proteins (SREBPs) play an important role in regulating lipid homeostasis. Translated as inactive precursors that are localized in the endoplasmic reticulum (ER) membrane, SREBPs are activated through a proteolytic process in response to intracellular demands for lipids. The cleaved amino-terminal fragments of SREBPs then translocate into the nucleus as homodimers and stimulate the transcription of target genes by binding to the sterol response elements (SREs) in their promoters. Numerous studies using cell culture or genetically modified mouse models have demonstrated that the major target genes of SREBPs include rate-limiting enzymes in the pathways of fatty acid and cholesterol biosynthesis as well as the low-density lipoprotein (LDL) receptor. The proteolytic maturation of SREBPs has been well studied in the past. However, recent studies have also improved our understanding on the regulation of nuclear SREBPs. In the nucleus, SREBPs interact with specific transcriptional cofactors, such as CBP/p300 and the Mediator complex, resulting in stimulation or inhibition of their transcriptional activities. In addition, nuclear SREBP protein stability is dynamically regulated by phosphorylation and acetylation. Such protein-protein interactions and post-translational modifications elegantly link the extracellular signals, such as insulin, or intracellular signals, such as oxidative stress, to lipid biosynthesis by modulating the transcriptional activity of SREBPs. Under normal physiological states, lipid homeostasis is strictly maintained. However, the SREBP pathways are often dysregulated in pathophysiological conditions, such as obesity, type 2 diabetes, and fatty liver diseases. Thus, the novel regulatory mechanisms of SREBPs may provide new opportunities for fighting these metabolic diseases.

甾醇调节元件结合蛋白(SREBPs)在调节脂质稳态中起重要作用。srebp被翻译为位于内质网(ER)膜上的无活性前体,在响应细胞内对脂质的需求时,通过蛋白水解过程被激活。裂解的SREBPs的氨基末端片段随后作为同型二聚体转运到细胞核中,并通过与启动子中的甾醇反应元件(SREs)结合来刺激靶基因的转录。大量使用细胞培养或转基因小鼠模型的研究表明,SREBPs的主要靶基因包括脂肪酸和胆固醇生物合成途径中的限速酶以及低密度脂蛋白(LDL)受体。过去对SREBPs的蛋白水解成熟已经有了很好的研究。然而,最近的研究也提高了我们对核SREBPs调控的理解。在细胞核中,SREBPs与特定的转录辅助因子(如CBP/p300和Mediator complex)相互作用,从而刺激或抑制其转录活性。此外,核SREBP蛋白的稳定性受磷酸化和乙酰化的动态调控。这种蛋白-蛋白相互作用和翻译后修饰通过调节SREBPs的转录活性,将细胞外信号(如胰岛素)或细胞内信号(如氧化应激)与脂质生物合成优雅地联系起来。在正常生理状态下,脂质稳态是严格维持的。然而,SREBP通路在病理生理条件下经常失调,如肥胖、2型糖尿病和脂肪肝疾病。因此,SREBPs的新调控机制可能为对抗这些代谢疾病提供新的机会。
{"title":"Regulation of SREBP-Mediated Gene Expression.","authors":"Zhao Xiaoping,&nbsp;Yang Fajun","doi":"10.3724/SP.J.1260.2012.20034","DOIUrl":"https://doi.org/10.3724/SP.J.1260.2012.20034","url":null,"abstract":"<p><p>The sterol regulatory element-binding proteins (SREBPs) play an important role in regulating lipid homeostasis. Translated as inactive precursors that are localized in the endoplasmic reticulum (ER) membrane, SREBPs are activated through a proteolytic process in response to intracellular demands for lipids. The cleaved amino-terminal fragments of SREBPs then translocate into the nucleus as homodimers and stimulate the transcription of target genes by binding to the sterol response elements (SREs) in their promoters. Numerous studies using cell culture or genetically modified mouse models have demonstrated that the major target genes of SREBPs include rate-limiting enzymes in the pathways of fatty acid and cholesterol biosynthesis as well as the low-density lipoprotein (LDL) receptor. The proteolytic maturation of SREBPs has been well studied in the past. However, recent studies have also improved our understanding on the regulation of nuclear SREBPs. In the nucleus, SREBPs interact with specific transcriptional cofactors, such as CBP/p300 and the Mediator complex, resulting in stimulation or inhibition of their transcriptional activities. In addition, nuclear SREBP protein stability is dynamically regulated by phosphorylation and acetylation. Such protein-protein interactions and post-translational modifications elegantly link the extracellular signals, such as insulin, or intracellular signals, such as oxidative stress, to lipid biosynthesis by modulating the transcriptional activity of SREBPs. Under normal physiological states, lipid homeostasis is strictly maintained. However, the SREBP pathways are often dysregulated in pathophysiological conditions, such as obesity, type 2 diabetes, and fatty liver diseases. Thus, the novel regulatory mechanisms of SREBPs may provide new opportunities for fighting these metabolic diseases.</p>","PeriodicalId":62275,"journal":{"name":"生物物理学报","volume":"28 4","pages":"287-294"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3724/SP.J.1260.2012.20034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31475076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
期刊
生物物理学报
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1