The effects of each of the flavonoids; genistein (G), quercetin (Q) and kaempferol (K) at several doses on lipid peroxides (LP) and reduced glutathione (GSH) in pooled human liver microsomes (HLMs) were investigated following the oxidative damage for 4, 6, 18 and 24 hr. HLMs (1 mg/ml) were exposed to each of the above flavonoids at 0, 5, 10, 15, 20 or 25 μM and incubated for the respective times as previously stated. Our hypothesis was that HLMs exposed to the flavonoids for the respective exposure times can decrease LP and increase GSH in HLMs to better cope with the oxidative stress. The results of our studies indicate that each of the flavonoids significantly (p < 0.01) decreased LP compared to their respective controls. The highest decrease in LP was observed for K followed by Q and G. Significant increases (p < 0.01) in GSH were observed for the flavonoid doses tested with the highest levels observed for Q for the 24-hr. incubation. The findings suggest that the flavonoids modulate oxidative stress in HLMs by decreasing LP and such decreases in LPs may be due to the increasing and or the replenished levels of GSH in the said cells to better cope with the oxidative stress.
Background: Cervical cancer is the second most common cancer in women worldwide [1]. Photodynamic therapy has been used for cervical intraepithelial neoplasia with good responses, but few studies have used newer phototherapeutics. We evaluated the effectiveness of photodynamic therapy using Pc 4 in vitro and in vivo against human cervical cancer cells.
Methods: CaSki and ME-180 cancer cells were grown as monolayers and spheroids. Cell growth and cytotoxicity were measured using a methylthiazol tetrazolium assay. Pc 4 cellular uptake and intracellular distrubtion were determined. For in vitro Pc 4 photodynamic therapy cells were irradiated at 667nm at a fluence of 2.5 J/cm2 at 48 h. SCID mice were implanted with CaSki and ME-180 cells both subcutaneously and intracervically. Forty-eight h after Pc 4 photodynamic therapy was administered at 75 and 150 J/cm2.
Results: The IC50s for Pc 4 and Pc 4 photodynamic therapy for CaSki and ME-180 cells as monolayers were, 7.6μM and 0.016μM and >10μM and 0.026μM; as spheroids, IC50s of Pc 4 photodynamic therapy were, 0.26μM and 0.01μM. Pc 4 was taken up within cells and widely distributed in tumors and tissues. Intracervical photodynamic therapy resulted in tumor death, however mice died due to gastrointestinal toxicity. Photodynamic therapy resulted in subcutaneous tumor death and growth delay.
Conclusions: Pc 4 photodynamic therapy caused death within cervical cancer cells and xenografts, supporting development of Pc 4 photodynamic therapy for treatment of cervical cancer. Support: P30-CA47904, CTSI BaCCoR Pilot Program.
During Nucleotide Excision Repair (NER) in the yeast S. cerevisiae, ubiquitylation of Rad4 is carried out by the E3 ubiquitin ligase that includes Rad7-Elc1-Cul3 and is critical to optimal NER. Rad7 E3 activity targets Rad4 for degradation by the proteaseome but, in principle, could also trigger other DNA damage responses. We observed increased nuclear ubiquitin foci (Ub-RFP) formation in S. cerevisiae containing a Rad7 E3 ligase mutant (rad7SOCS) in response to DNA damage by benzo[a]pyrenediolepoxide (BPDE) in dividing cells. Immunoblots reveal that ubiquitin conjugates of Rpn10 and Dsk2 accumulate in greater abundance in rad7SOCS compared to RAD7 in dividing cells in response to BPDE which makes Rpn10 and Dsk2 candidates for being the ubiquitylated species observed in our microscopy experiments. Microscopy analysis with strains containing Dsk2-GFP shows that Dsk2-GFP and Dsk2-GFP/Ub-RFP colocalized in nuclear foci form to an increased extent in a rad7SOCS mutant background in dividing cells than in a RAD7 wild-type strain. Further, Dsk2-GFP in the rad7SOCS strain formed more foci at the plasma membrane following BPDE treatment in dividing cells relative to strains containing RAD7 or a rad7Δ deletion mutant. In response to a different agent, UV irradiation, levels of ubiquitylated proteins were increased in rad7SOCS relative to RAD7, and the proteasomal deubiquitylase subunit, Rpn11 was even monoubiquitylated in the absence of damaging agents. Together these data show that Rad7 E3 activity attenuates ubiquitylation of proteins regulating the shuttling of polyubiquitylated proteins to the proteasome (Dsk2 and Rpn10) and removal of ubiquitin chains just prior to degradation (Rpn11). Since Rad7 E3 ligase activity has been shown to increase ubiquitylation of its target proteins, yet our results show increased ubiquitylation in the absence of Rad7 E3, we suggest that Rad7 E3 action regulates ubiquitin ligase and deubiquitylase (DUB) activities that act on Rpn10, Dsk2 and Rpn11.
The benzenearsonate, Roxarsone, has been used since 1944 as an antimicrobial, growth-promoting poultry feed additive. USGS and EPA report that Roxarsone (4-hydroxy-3-nitrobenzenearsonate) and metabolites, including AHBA (3-amino-4-hydroxybenzenearsonate), contaminate waterways at greater than 1100 tons annually. To assess human impact of these organic arsenic water contaminants, it was important to study their potential absorption. The human adenocarcinoma cell line, Caco-2, is a model for intestinal absorption. We found proliferative effects on Caco-2 cells at micromolar levels of these compounds, as monitored by [3H]-thymidine incorporation into DNA. Flow cytometry cell cycle analysis confirmed accumulation in S phase from 21% (control) to 36% (24 hour exposure to 10 μM AHBA). Confluent Caco-2 cells grown on collagen-coated Transwell plates were dosed on the apical side. After exposure, media from apical and basolateral sides were collected separately. Following removal of FBS by 30K centrifugal filtration, the benzenearsonates in the collected media were analyzed by HPLC. Analyses were at wavelengths in the ultraviolet/visible range where the absorbance values were linear with respect to concentration. Concentrations were calculated by comparison with analytically-prepared commercial standards. Results from cells dosed at 10 μM for 24 hours with AHBA, Roxarsone, or Acetarsone indicated 6% - 29% permeation occurring from apical to basolateral side, modeling absorption across intestinal epithelium to the circulatory system. Benzenearsonate feed additives are frequently applied in combination with antibiotics, raising additional health concerns. We conclude that micromolar levels of these benzenearsonates are adequate to stimulate Caco-2 cell proliferation.
Several modes of eukaryotic of DNA double strand break repair (DSBR) depend on synapsis of complementary DNA. The Rad51 ATPase, the S. cerevisiae homolog of E. coli RecA, plays a key role in this process by catalyzing homology searching and strand exchange between an invading DNA strand and a repair template (e.g. sister chromatid or homologous chromosome). Synthesis dependent strand annealing (SDSA), a mode of DSBR, requires Rad51. Another repair enzyme, the Rad1-Rad10 endonuclease, acts in the final stages of SDSA, hydrolyzing 3' overhanging single-stranded DNA. Here we show in vivo by fluorescence microscopy that the ATP binding function of yeast Rad51 is required to recruit Rad10 SDSA sites indicating that Rad51 pre-synaptic filament formation must occur prior to the recruitment of Rad1-Rad10. Our data also show that Rad51 ATPase activity, an important step in Rad51 filament disassembly, is not absolutely required in order to recruit Rad1-Rad10 to DSB sites.
Background: Insulin resistance is linked to dyslipidemia, characterized by a decrease in high density lipoproteins and an increase in low density lipoproteins. Thiazolidinediones (TZDs) are insulin-sensitizing agents used to improve glycemic control in patients with type 2 diabetes. Recently, the safety of certain TZD regimens has been questioned because of associated adverse effects on the plasma lipid profile. We examined the effect of a TZD, Ciglitazone, on apolipoprotein synthesis and secretion in human liver HepG2 cells.
Methods and results: The effect of Ciglitazone treatment on apolipoprotein synthesis was addressed at the level of transcription, translation and secretion. RT-PCR showed that Ciglitazone increased the transcription of apoE and apoAI but reduced the levels of apoCI and apoB mRNA. Western blot analysis showed an increase in apoAI and apoE secreted in the cell culture media, whereas the amounts of apoB100 and apoCI were reduced. To confirm that Ciglitazone regulates apolipoprotein translation, its effect on de novo protein synthesis was evaluated by metabolic labeling with [35S]-methionine/cysteine, and a similar pattern of regulation was observed. The change in apolipoprotein levels was not secondary to cholesterol biosynthesis or clearance, since Ciglitazone did not regulate the transcription of HMGCoA reductase, or the LDL receptor. However, mRNA levels for both PPAR-γ and LXRα were induced, suggesting a role for either or both receptors in modulating the hepatic apolipoprotein profile. The involvement of these nuclear receptor transcription factors was confirmed since direct activation of these receptors by endogenous PPAR-γ ligand, 15d-prostaglandin J2, or LXRα ligand, 22(R)hydroxycholesterol, similarly upregulated apoAI and apoE, but down-regulated apoB100 protein synthesis.
Conclusion: Our results suggest that Ciglitazone treatment results in an atheroprotective lipoprotein profile in liver cells. Thus, while the adipose and muscle tissues may be primary targets in TZD-mediated glucose homeostasis, liver PPAR-γ contributes significantly to the regulation of plasma lipoprotein profile.