首页 > 最新文献

Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization最新文献

英文 中文
Designing Born-Accessible Courses in Data Science and Visualization: Challenges and Opportunities of a Remote Curriculum Taught by Blind Instructors to Blind Students. 设计数据科学与可视化的无障碍课程:盲人教师向盲人学生讲授远程课程的挑战与机遇。
JooYoung Seo, Sile O'Modhrain, Yilin Xia, Sanchita Kamath, Bongshin Lee, James M Coughlan

While recent years have seen a growing interest in accessible visualization tools and techniques for blind people, little attention is paid to the learning opportunities and teaching strategies of data science and visualization tailored for blind individuals. Whereas the former focuses on the accessibility and usability issues of data visualization tools, the latter is concerned with the learnability of concepts and skills for data science and visualization. In this paper, we present novel approaches to teaching data science and visualization to blind students in an online setting. Taught by blind instructors, nine blind learners having a wide range of professional backgrounds participated in a two-week summer course. We describe the course design, teaching strategies, and learning outcomes. We also discuss the challenges and opportunities of teaching data science and visualization to blind students. Our work contributes to the growing body of knowledge on accessible data science and visualization education, and provides insights into the design of online courses for blind students.

虽然近年来人们对盲人使用的可视化工具和技术越来越感兴趣,但很少有人关注为盲人量身定制的数据科学和可视化的学习机会和教学策略。前者关注的是数据可视化工具的可访问性和可用性问题,后者关注的是数据科学和可视化的概念和技能的可学习性。在本文中,我们提出了一种新颖的方法来教授数据科学和可视化的盲人学生在一个在线设置。在盲人教师的指导下,9名具有广泛专业背景的盲人学习者参加了为期两周的暑期课程。我们描述了课程设计、教学策略和学习成果。我们还讨论了向盲人学生教授数据科学和可视化的挑战和机遇。我们的工作为无障碍数据科学和可视化教育的知识体系的增长做出了贡献,并为盲人学生的在线课程设计提供了见解。
{"title":"Designing Born-Accessible Courses in Data Science and Visualization: Challenges and Opportunities of a Remote Curriculum Taught by Blind Instructors to Blind Students.","authors":"JooYoung Seo, Sile O'Modhrain, Yilin Xia, Sanchita Kamath, Bongshin Lee, James M Coughlan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>While recent years have seen a growing interest in accessible visualization tools and techniques for blind people, little attention is paid to the learning opportunities and teaching strategies of data science and visualization tailored for blind individuals. Whereas the former focuses on the accessibility and usability issues of data visualization tools, the latter is concerned with the learnability of concepts and skills for data science and visualization. In this paper, we present novel approaches to teaching data science and visualization to blind students in an online setting. Taught by blind instructors, nine blind learners having a wide range of professional backgrounds participated in a two-week summer course. We describe the course design, teaching strategies, and learning outcomes. We also discuss the challenges and opportunities of teaching data science and visualization to blind students. Our work contributes to the growing body of knowledge on accessible data science and visualization education, and provides insights into the design of online courses for blind students.</p>","PeriodicalId":72959,"journal":{"name":"Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CellTrackVis: analyzing the performance of cell tracking algorithms. CellTrackVis:分析细胞跟踪算法的性能。
W Li, X Zhang, A Stern, M Birtwistle, F Iuricich

Live-cell imaging is a common data acquisition technique used by biologists to analyze cell behavior. Since manually tracking cells in a video sequence is extremely time-consuming, many automatic algorithms have been developed in the last twenty years to accomplish the task. However, none of these algorithms can yet claim robust tracking performance at the varying of acquisition conditions (e.g., cell type, acquisition device, cell treatments). While many visualization tools exist to help with cell behavior analysis, there are no tools to help with the algorithm's validation. This paper proposes CellTrackVis, a new visualization tool for evaluating cell tracking algorithms. CellTrackVis allows comparing automatically generated cell tracks with ground truth data to help biologists select the best-suited algorithm for their experimented pipeline. Moreover, CellTackVis can be used as a debugging tool while developing a new cell tracking algorithm to investigate where, when, and why each tracking error occurred.

活细胞成像是生物学家用来分析细胞行为的常用数据采集技术。由于手动跟踪视频序列中的细胞非常耗时,在过去的二十年中,许多自动算法被开发出来来完成这项任务。然而,这些算法都不能在不同的采集条件下(例如,细胞类型,采集设备,细胞处理)声称具有稳健的跟踪性能。虽然有许多可视化工具可以帮助进行细胞行为分析,但没有工具可以帮助进行算法验证。本文提出了一种新的可视化工具CellTrackVis,用于评估细胞跟踪算法。CellTrackVis允许将自动生成的细胞轨迹与地面真实数据进行比较,以帮助生物学家为他们的实验管道选择最适合的算法。此外,在开发新的细胞跟踪算法时,CellTackVis可以用作调试工具,以调查每个跟踪错误发生的地点、时间和原因。
{"title":"CellTrackVis: analyzing the performance of cell tracking algorithms.","authors":"W Li,&nbsp;X Zhang,&nbsp;A Stern,&nbsp;M Birtwistle,&nbsp;F Iuricich","doi":"10.2312/evs.20221103","DOIUrl":"https://doi.org/10.2312/evs.20221103","url":null,"abstract":"<p><p>Live-cell imaging is a common data acquisition technique used by biologists to analyze cell behavior. Since manually tracking cells in a video sequence is extremely time-consuming, many automatic algorithms have been developed in the last twenty years to accomplish the task. However, none of these algorithms can yet claim robust tracking performance at the varying of acquisition conditions (e.g., cell type, acquisition device, cell treatments). While many visualization tools exist to help with cell behavior analysis, there are no tools to help with the algorithm's validation. This paper proposes CellTrackVis, a new visualization tool for evaluating cell tracking algorithms. CellTrackVis allows comparing automatically generated cell tracks with ground truth data to help biologists select the best-suited algorithm for their experimented pipeline. Moreover, CellTackVis can be used as a debugging tool while developing a new cell tracking algorithm to investigate where, when, and why each tracking error occurred.</p>","PeriodicalId":72959,"journal":{"name":"Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization","volume":"2022 ","pages":"115-119"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841471/pdf/nihms-1862810.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10604659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Visualization for Understanding Uncertainty in Activation Volumes for Deep Brain Stimulation 可视化理解脑深部刺激激活体积的不确定性
B. Hollister, Gordon Duffley, C. Butson, Chris R. Johnson, P. Rosen
We have created the Neurostimulation Uncertainty Viewer (nuView or νView) tool for exploring data arising from deep brain stimulation (DBS). Simulated volume of tissue activated (VTA), using clinical electrode placements, are recorded along with patient outcomes in the Unified Parkinson's disease rating scale (UPDRS). The data is volumetric and sparse, with multi-value patient results for each activated voxel in the simulation. νView provides a collection of visual methods to explore the activated tissue to enhance understanding of electrode usage for improved therapy with DBS.
我们创建了神经刺激不确定性查看器(nuView或νView)工具,用于探索脑深部刺激(DBS)产生的数据。使用临床电极放置的模拟组织激活体积(VTA)与统一帕金森病评定量表(UPDRS)中的患者结果一起被记录。数据是体积和稀疏的,在模拟中每个激活体素具有多值患者结果。νView提供了一系列可视化方法来探索活化组织,以增强对电极使用的理解,从而改进DBS治疗。
{"title":"Visualization for Understanding Uncertainty in Activation Volumes for Deep Brain Stimulation","authors":"B. Hollister, Gordon Duffley, C. Butson, Chris R. Johnson, P. Rosen","doi":"10.2312/eurovisshort.20161158","DOIUrl":"https://doi.org/10.2312/eurovisshort.20161158","url":null,"abstract":"We have created the Neurostimulation Uncertainty Viewer (nuView or νView) tool for exploring data arising from deep brain stimulation (DBS). Simulated volume of tissue activated (VTA), using clinical electrode placements, are recorded along with patient outcomes in the Unified Parkinson's disease rating scale (UPDRS). The data is volumetric and sparse, with multi-value patient results for each activated voxel in the simulation. νView provides a collection of visual methods to explore the activated tissue to enhance understanding of electrode usage for improved therapy with DBS.","PeriodicalId":72959,"journal":{"name":"Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization","volume":"60 1","pages":"37-41"},"PeriodicalIF":0.0,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83590702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pattern Visualization of Human Connectome Data. 人类连接体数据的模式可视化。
Yishi Guo, Yang Wang, Shiaofen Fang, Hongyang Chao, Andrew J Saykin, Li Shen

The human brain is a complex network with countless connected neurons, and can be described as a "connectome". Existing studies on analyzing human connectome data are primarily focused on characterizing the brain networks with a small number of easily computable measures that may be inadequate for revealing complex relationship between brain function and its structural substrate. To facilitate large-scale connectomic analysis, in this paper, we propose a powerful and flexible volume rendering scheme to effectively visualize and interactively explore thousands of network measures in the context of brain anatomy, and to aid pattern discovery. We demonstrate the effectiveness of the proposed scheme by applying it to a real connectome data set.

人类的大脑是一个由无数相连的神经元组成的复杂网络,可以被描述为一个“连接组”。现有的分析人类连接组数据的研究主要集中在用少量易于计算的测量来表征大脑网络,这些测量可能不足以揭示大脑功能与其结构基质之间的复杂关系。为了便于大规模的连接组分析,本文提出了一种强大而灵活的体绘制方案,以有效地可视化和交互式地探索大脑解剖学背景下的数千个网络测量,并帮助发现模式。我们通过将其应用于真实的连接体数据集来证明所提出方案的有效性。
{"title":"Pattern Visualization of Human Connectome Data.","authors":"Yishi Guo,&nbsp;Yang Wang,&nbsp;Shiaofen Fang,&nbsp;Hongyang Chao,&nbsp;Andrew J Saykin,&nbsp;Li Shen","doi":"10.2312/PE/EuroVisShort/EuroVisShort2012/078-083","DOIUrl":"https://doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/078-083","url":null,"abstract":"<p><p>The human brain is a complex network with countless connected neurons, and can be described as a \"connectome\". Existing studies on analyzing human connectome data are primarily focused on characterizing the brain networks with a small number of easily computable measures that may be inadequate for revealing complex relationship between brain function and its structural substrate. To facilitate large-scale connectomic analysis, in this paper, we propose a powerful and flexible volume rendering scheme to effectively visualize and interactively explore thousands of network measures in the context of brain anatomy, and to aid pattern discovery. We demonstrate the effectiveness of the proposed scheme by applying it to a real connectome data set.</p>","PeriodicalId":72959,"journal":{"name":"Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization","volume":"2012 ","pages":"78-83"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469287/pdf/nihms695796.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33403179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1