首页 > 最新文献

Medical image learning with limited and noisy data : first international workshop, MILLanD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings. MILLanD (Workshop) (1st : 2022 : Singapore)最新文献

英文 中文
Image Quality Classification for Automated Visual Evaluation of Cervical Precancer. 用于宫颈癌前病变自动视觉评估的图像质量分类。
Zhiyun Xue, Sandeep Angara, Peng Guo, Sivaramakrishnan Rajaraman, Jose Jeronimo, Ana Cecilia Rodriguez, Karla Alfaro, Kittipat Charoenkwan, Chemtai Mungo, Joel Fokom Domgue, Nicolas Wentzensen, Kanan T Desai, Kayode Olusegun Ajenifuja, Elisabeth Wikström, Brian Befano, Silvia de Sanjosé, Mark Schiffman, Sameer Antani

Image quality control is a critical element in the process of data collection and cleaning. Both manual and automated analyses alike are adversely impacted by bad quality data. There are several factors that can degrade image quality and, correspondingly, there are many approaches to mitigate their negative impact. In this paper, we address image quality control toward our goal of improving the performance of automated visual evaluation (AVE) for cervical precancer screening. Specifically, we report efforts made toward classifying images into four quality categories ("unusable", "unsatisfactory", "limited", and "evaluable") and improving the quality classification performance by automatically identifying mislabeled and overly ambiguous images. The proposed new deep learning ensemble framework is an integration of several networks that consists of three main components: cervix detection, mislabel identification, and quality classification. We evaluated our method using a large dataset that comprises 87,420 images obtained from 14,183 patients through several cervical cancer studies conducted by different providers using different imaging devices in different geographic regions worldwide. The proposed ensemble approach achieved higher performance than the baseline approaches.

图像质量控制是数据收集和清理过程中的一个关键因素。手动和自动分析都会受到不良质量数据的不利影响。有几个因素会降低图像质量,相应地,有许多方法可以减轻它们的负面影响。在本文中,我们致力于图像质量控制,以提高宫颈癌前筛查的自动视觉评估(AVE)的性能。具体而言,我们报告了将图像分为四个质量类别(“不可用”、“不令人满意”、“有限”和“可评估”)的努力,并通过自动识别标签错误和过于模糊的图像来提高质量分类性能。所提出的新的深度学习集成框架是几个网络的集成,由三个主要组成部分组成:宫颈检测、标签错误识别和质量分类。我们使用一个大型数据集对我们的方法进行了评估,该数据集包括从14183名患者中获得的87420张图像,这些患者是通过全球不同地理区域的不同提供者使用不同成像设备进行的几项癌症研究获得的。所提出的集成方法实现了比基线方法更高的性能。
{"title":"Image Quality Classification for Automated Visual Evaluation of Cervical Precancer.","authors":"Zhiyun Xue,&nbsp;Sandeep Angara,&nbsp;Peng Guo,&nbsp;Sivaramakrishnan Rajaraman,&nbsp;Jose Jeronimo,&nbsp;Ana Cecilia Rodriguez,&nbsp;Karla Alfaro,&nbsp;Kittipat Charoenkwan,&nbsp;Chemtai Mungo,&nbsp;Joel Fokom Domgue,&nbsp;Nicolas Wentzensen,&nbsp;Kanan T Desai,&nbsp;Kayode Olusegun Ajenifuja,&nbsp;Elisabeth Wikström,&nbsp;Brian Befano,&nbsp;Silvia de Sanjosé,&nbsp;Mark Schiffman,&nbsp;Sameer Antani","doi":"10.1007/978-3-031-16760-7_20","DOIUrl":"10.1007/978-3-031-16760-7_20","url":null,"abstract":"<p><p>Image quality control is a critical element in the process of data collection and cleaning. Both manual and automated analyses alike are adversely impacted by bad quality data. There are several factors that can degrade image quality and, correspondingly, there are many approaches to mitigate their negative impact. In this paper, we address image quality control toward our goal of improving the performance of automated visual evaluation (AVE) for cervical precancer screening. Specifically, we report efforts made toward classifying images into four quality categories (\"unusable\", \"unsatisfactory\", \"limited\", and \"evaluable\") and improving the quality classification performance by automatically identifying mislabeled and overly ambiguous images. The proposed new deep learning ensemble framework is an integration of several networks that consists of three main components: cervix detection, mislabel identification, and quality classification. We evaluated our method using a large dataset that comprises 87,420 images obtained from 14,183 patients through several cervical cancer studies conducted by different providers using different imaging devices in different geographic regions worldwide. The proposed ensemble approach achieved higher performance than the baseline approaches.</p>","PeriodicalId":74146,"journal":{"name":"Medical image learning with limited and noisy data : first international workshop, MILLanD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings. MILLanD (Workshop) (1st : 2022 : Singapore)","volume":"13559 ","pages":"206-217"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614805/pdf/nihms-1840611.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10821372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medical Image Learning with Limited and Noisy Data: First International Workshop, MILLanD 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings 有限和噪声数据的医学图像学习:第一届国际研讨会,MILLanD 2022,与MICCAI 2022一起举行,新加坡,2022年9月22日,会议录
{"title":"Medical Image Learning with Limited and Noisy Data: First International Workshop, MILLanD 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings","authors":"","doi":"10.1007/978-3-031-16760-7","DOIUrl":"https://doi.org/10.1007/978-3-031-16760-7","url":null,"abstract":"","PeriodicalId":74146,"journal":{"name":"Medical image learning with limited and noisy data : first international workshop, MILLanD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings. MILLanD (Workshop) (1st : 2022 : Singapore)","volume":"220 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85039331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Medical image learning with limited and noisy data : first international workshop, MILLanD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings. MILLanD (Workshop) (1st : 2022 : Singapore)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1