首页 > 最新文献

Multimodal brain image analysis and mathematical foundations of computational anatomy : 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17,...最新文献

英文 中文
Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy: 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings 多模态脑图像分析和计算解剖学的数学基础:第四届国际研讨会,MBIA 2019,第七届国际研讨会,MFCA 2019,与MICCAI 2019一起举行,中国深圳,2019年10月17日,论文集
Dajiang Zhu, Jingwen Yan, Heng Huang, Li Shen, P. Thompson, C. Westin, X. Pennec, S. Joshi, M. Nielsen, Tom Fletcher, S. Durrleman, S. Sommer
{"title":"Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy: 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings","authors":"Dajiang Zhu, Jingwen Yan, Heng Huang, Li Shen, P. Thompson, C. Westin, X. Pennec, S. Joshi, M. Nielsen, Tom Fletcher, S. Durrleman, S. Sommer","doi":"10.1007/978-3-030-33226-6","DOIUrl":"https://doi.org/10.1007/978-3-030-33226-6","url":null,"abstract":"","PeriodicalId":87328,"journal":{"name":"Multimodal brain image analysis and mathematical foundations of computational anatomy : 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17,...","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75436000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes. BrainPainter:脑结构、生物标记和相关病理过程的可视化软件。
Răzvan V Marinescu, Arman Eshaghi, Daniel C Alexander, Polina Golland

We present BrainPainter, a software that automatically generates images of highlighted brain structures given a list of numbers corresponding to the output colours of each region. Compared to existing visualisation software (i.e. Freesurfer, SPM, 3D Slicer), BrainPainter has three key advantages: (1) it does not require the input data to be in a specialised format, allowing BrainPainter to be used in combination with any neuroimaging analysis tools, (2) it can visualise both cortical and subcortical structures and (3) it can be used to generate movies showing dynamic processes, e.g. propagation of pathology on the brain. We highlight three use cases where BrainPainter was used in existing neuroimaging studies: (1) visualisation of the degree of atrophy through interpolation along a user-defined gradient of colours, (2) visualisation of the progression of pathology in Alzheimer's disease as well as (3) visualisation of pathology in subcortical regions in Huntington's disease. Moreover, through the design of BrainPainter we demonstrate the possibility of using a powerful 3D computer graphics engine such as Blender to generate brain visualisations for the neuroscience community. Blender's capabilities, e.g. particle simulations, motion graphics, UV unwrapping, raster graphics editing, raytracing and illumination effects, open a wealth of possibilities for brain visualisation not available in current neuroimaging software. BrainPainter is customisable, easy to use, and can run straight from the web browser: https://brainpainter.csail.mit.edu, as well as from source-code packaged in a docker container: https://github.com/mrazvan22/brain-coloring. It can be used to visualise biomarker data from any brain imaging modality, or simply to highlight a particular brain structure for e.g. anatomy courses.

我们介绍了BrainPainter,这是一个软件,它可以自动生成高亮显示的大脑结构的图像,并给出与每个区域的输出颜色相对应的数字列表。与现有的可视化软件(即Freesurfer, SPM, 3D切片器)相比,BrainPainter有三个关键优势:(1)它不需要输入数据以专门的格式,允许BrainPainter与任何神经成像分析工具结合使用;(2)它可以可视化皮层和皮层下结构;(3)它可以用来生成显示动态过程的电影,例如大脑病理学的传播。我们重点介绍了BrainPainter在现有神经影像学研究中的三个用例:(1)通过用户定义的颜色梯度插值来可视化萎缩程度,(2)阿尔茨海默病病理进展的可视化,以及(3)亨廷顿病皮层下区域病理的可视化。此外,通过BrainPainter的设计,我们展示了使用强大的3D计算机图形引擎(如Blender)为神经科学社区生成大脑可视化的可能性。Blender的功能,例如粒子模拟,运动图形,UV展开,光栅图形编辑,光线追踪和照明效果,为当前神经成像软件中不可用的大脑可视化提供了丰富的可能性。BrainPainter是可定制的,易于使用,并且可以直接从web浏览器运行:https://brainpainter.csail.mit.edu,也可以从打包在docker容器中的源代码运行:https://github.com/mrazvan22/brain-coloring。它可以用于从任何脑成像模式中可视化生物标志物数据,或者简单地突出显示特定的大脑结构,例如解剖学课程。
{"title":"BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes.","authors":"Răzvan V Marinescu,&nbsp;Arman Eshaghi,&nbsp;Daniel C Alexander,&nbsp;Polina Golland","doi":"10.1007/978-3-030-33226-6_13","DOIUrl":"https://doi.org/10.1007/978-3-030-33226-6_13","url":null,"abstract":"<p><p>We present BrainPainter, a software that automatically generates images of highlighted brain structures given a list of numbers corresponding to the output colours of each region. Compared to existing visualisation software (i.e. Freesurfer, SPM, 3D Slicer), BrainPainter has three key advantages: (1) it does not require the input data to be in a specialised format, allowing BrainPainter to be used in combination with any neuroimaging analysis tools, (2) it can visualise both cortical and subcortical structures and (3) it can be used to generate movies showing dynamic processes, e.g. propagation of pathology on the brain. We highlight three use cases where BrainPainter was used in existing neuroimaging studies: (1) visualisation of the degree of atrophy through interpolation along a user-defined gradient of colours, (2) visualisation of the progression of pathology in Alzheimer's disease as well as (3) visualisation of pathology in subcortical regions in Huntington's disease. Moreover, through the design of BrainPainter we demonstrate the possibility of using a powerful 3D computer graphics engine such as Blender to generate brain visualisations for the neuroscience community. Blender's capabilities, e.g. particle simulations, motion graphics, UV unwrapping, raster graphics editing, raytracing and illumination effects, open a wealth of possibilities for brain visualisation not available in current neuroimaging software. BrainPainter is customisable, easy to use, and can run straight from the web browser: https://brainpainter.csail.mit.edu, as well as from source-code packaged in a docker container: https://github.com/mrazvan22/brain-coloring. It can be used to visualise biomarker data from any brain imaging modality, or simply to highlight a particular brain structure for e.g. anatomy courses.</p>","PeriodicalId":87328,"journal":{"name":"Multimodal brain image analysis and mathematical foundations of computational anatomy : 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17,...","volume":"11846 ","pages":"112-120"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853665/pdf/nihms-1586275.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25329242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Surface Foliation Based Brain Morphometry Analysis. 基于表面叶理的脑形态分析。
Chengfeng Wen, Na Lei, Ming Ma, Xin Qi, Wen Zhang, Yalin Wang, Xianfeng Gu

Brain morphometry plays a fundamental role in neuroimaging research. In this work, we propose a novel method for brain surface morphometry analysis based on surface foliation theory. Given brain cortical surfaces with automatically extracted landmark curves, we first construct finite foliations on surfaces. A set of admissible curves and a height parameter for each loop are provided by users. The admissible curves cut the surface into a set of pairs of pants. A pants decomposition graph is then constructed. Strebel differential is obtained by computing a unique harmonic map from surface to pants decomposition graph. The critical trajectories of Strebel differential decompose the surface into topological cylinders. After conformally mapping those topological cylinders to standard cylinders, parameters of standard cylinders (height, circumference) are intrinsic geometric features of the original cortical surfaces and thus can be used for morphometry analysis purpose. In this work, we propose a set of novel surface features. To the best of our knowledge, this is the first work to make use of surface foliation theory for brain morphometry analysis. The features we computed are intrinsic and informative. The proposed method is rigorous, geometric, and automatic. Experimental results on classifying brain cortical surfaces between patients with Alzheimer's disease and healthy control subjects demonstrate the efficiency and efficacy of our method.

脑形态测量学在神经影像学研究中起着重要的作用。在这项工作中,我们提出了一种基于表面叶理理论的脑表面形态分析新方法。给定具有自动提取的地标曲线的大脑皮质表面,我们首先在表面上构造有限叶状结构。用户提供了一组允许的曲线和每个回路的高度参数。允许的曲线将表面切割成一组裤子。然后构造一个裤子分解图。通过计算曲面到裤子分解图的唯一谐波映射,得到Strebel微分。Strebel微分的临界轨迹将曲面分解为拓扑圆柱体。在将这些拓扑圆柱体与标准圆柱体共形映射后,标准圆柱体的参数(高度、周长)是原始皮质表面的固有几何特征,因此可以用于形态计量学分析。在这项工作中,我们提出了一组新的表面特征。据我们所知,这是第一个利用表面叶理理论进行脑形态分析的工作。我们计算的特征是内在的和信息丰富的。该方法具有严密、几何化、自动化等特点。阿尔茨海默病患者与健康对照者脑皮层表面分类的实验结果证明了该方法的有效性。
{"title":"Surface Foliation Based Brain Morphometry Analysis.","authors":"Chengfeng Wen,&nbsp;Na Lei,&nbsp;Ming Ma,&nbsp;Xin Qi,&nbsp;Wen Zhang,&nbsp;Yalin Wang,&nbsp;Xianfeng Gu","doi":"10.1007/978-3-030-33226-6_20","DOIUrl":"https://doi.org/10.1007/978-3-030-33226-6_20","url":null,"abstract":"<p><p>Brain morphometry plays a fundamental role in neuroimaging research. In this work, we propose a novel method for brain surface morphometry analysis based on surface foliation theory. Given brain cortical surfaces with automatically extracted landmark curves, we first construct finite foliations on surfaces. A set of admissible curves and a height parameter for each loop are provided by users. The admissible curves cut the surface into a set of pairs of pants. A pants decomposition graph is then constructed. Strebel differential is obtained by computing a unique harmonic map from surface to pants decomposition graph. The critical trajectories of Strebel differential decompose the surface into topological cylinders. After conformally mapping those topological cylinders to standard cylinders, parameters of standard cylinders (height, circumference) are intrinsic geometric features of the original cortical surfaces and thus can be used for morphometry analysis purpose. In this work, we propose a set of novel surface features. To the best of our knowledge, this is the first work to make use of surface foliation theory for brain morphometry analysis. The features we computed are intrinsic and informative. The proposed method is rigorous, geometric, and automatic. Experimental results on classifying brain cortical surfaces between patients with Alzheimer's disease and healthy control subjects demonstrate the efficiency and efficacy of our method.</p>","PeriodicalId":87328,"journal":{"name":"Multimodal brain image analysis and mathematical foundations of computational anatomy : 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17,...","volume":"11846 ","pages":"186-195"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112249/pdf/nihms-1062809.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38975267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Multimodal brain image analysis and mathematical foundations of computational anatomy : 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17,...
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1